Role of Niobium on the Passivation Mechanisms of TiHfZrNb High-Entropy Alloys in Hanks' Simulated Body Fluid.

J Funct Biomater

Department of Mining, Metallurgical, and Materials Engineering, Laval University, Quebec City, QC G1V 0A6, Canada.

Published: October 2024

A family of TiHfZrNb high-entropy alloys has been considered novel biomaterials for high-performance, small-sized implants. The present work evaluates the role of niobium on passivation kinetics and electrochemical characteristics of passive film on TiHfZrNb alloys formed in Hanks' simulated body fluid by analyzing electrochemical data with three analytical models. Results confirm that higher niobium content in the alloys reinforces the compactness of the passive film by favoring the dominance of film formation and thickening mechanism over the dissolution mechanism. Higher niobium content enhances the passivation kinetics to rapidly form the first layer, and total surface coverage reinforces the capacitive-resistant behavior of the film by enrichment with niobium oxides and reduces the point defect density and their mobility across the film, lowering pitting initiation susceptibility. With the high resistance to dissolution and rapid repassivation ability in the aggressive Hanks' simulated body fluid, the TiHfZrNb alloys confirm their great potential as new materials for biomedical implants and warrant further biocompatibility testing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508226PMC
http://dx.doi.org/10.3390/jfb15100305DOI Listing

Publication Analysis

Top Keywords

hanks' simulated
12
simulated body
12
body fluid
12
role niobium
8
niobium passivation
8
tihfzrnb high-entropy
8
high-entropy alloys
8
passivation kinetics
8
passive film
8
tihfzrnb alloys
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!