Titanium and titanium alloys are the prevailing dental implant materials owing to their favorable mechanical properties and biocompatibility, but how roughness dictates the biological response is still a matter of debate. In this study, laser texturing was used to generate eight paradigmatic roughened surfaces, with the aim of studying the early biological response elicited on MC3T3-E1 pre-osteoblasts. Prior to cell tests, the samples underwent SEM analysis, optical profilometry, protein adsorption assay, and optical contact angle measurement with water and diiodomethane to determine surface free energy. While all the specimens proved to be biocompatible, supporting similar cell viability at 1, 2, and 3 days, surface roughness could impact significantly on cell adhesion. Factorial analysis and linear regression showed, in a robust and unprecedented way, that an isotropic distribution of deep and closely spaced valleys provides the best condition for cell adhesion, to which both protein adsorption and surface free energy were highly correlated. Overall, here the authors provide, for the first time, a thorough investigation of the relationship between roughness parameters and osteoblast adhesion that may be applied to design and produce new tailored interfaces for implant materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508658 | PMC |
http://dx.doi.org/10.3390/jfb15100303 | DOI Listing |
Nano Lett
January 2025
Department of Physics, Centre for Materials Science and Nanotechnology, University of Oslo, PO Box 1048 Blindern, N-0316 Oslo, Norway.
Polymorphism determines significant variations in materials' properties by lattice symmetry variation. If they are stacked together into multilayers, polymorphs may work as an alternative approach to the sequential deposition of layers with different chemical compositions. However, selective polymorph crystallization during conventional thin film synthesis is not trivial; changes of temperature or pressure when switching from one polymorph to another during synthesis may cause degradation of the structural quality.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
January 2025
Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, People's Republic of China.
In dental implant surgery, infection is identified as the primary factor contributing to the failure of bone grafts. There is an urgent need to develop bone graft materials possessing antibacterial characteristics to facilitate bone regeneration. Magnesium phosphate bone cement (MPC) is highly desirable for bone regeneration due to its favorable biocompatibility, plasticity, and osteogenic capabilities.
View Article and Find Full Text PDFTissue Eng Part A
January 2025
C. Wayne McIlwraith Translational Medicine Institute, Colorado State University, Fort Collins, Colorado, USA.
Scaffolds made from cartilage extracellular matrix are promising materials for articular cartilage repair, attributed to their intrinsic bioactivity that may promote chondrogenesis. While several cartilage matrix-based scaffolds have supported chondrogenesis and/or , it remains a challenge to balance the biological response (e.g.
View Article and Find Full Text PDF3D Print Med
January 2025
Department of Surgical & Interventional Engineering, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK.
Background: Penile implant surgery is the standard surgical treatment for end-stage erectile dysfunction. However, the growing complexity of modern high-tech penile prostheses has increased the demand for more practical training opportunities. The most advanced contemporary training methods involve simulation training using cadavers, with costs exceeding $5,000 per cadaver, inclusive of biohazard fees.
View Article and Find Full Text PDFClin Oral Investig
January 2025
Department of Periodontology, Semmelweis University, Budapest, Hungary.
Objectives: To investigate the performance of a deep learning (DL) model for segmenting cone-beam computed tomography (CBCT) scans taken before and after mandibular horizontal guided bone regeneration (GBR) to evaluate hard tissue changes.
Materials And Methods: The proposed SegResNet-based DL model was trained on 70 CBCT scans. It was tested on 10 pairs of pre- and post-operative CBCT scans of patients who underwent mandibular horizontal GBR.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!