Suspension-Sprayed Calcium Phosphate Coatings with Antibacterial Properties.

J Funct Biomater

G.E.R.N. Center of Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany.

Published: September 2024

AI Article Synopsis

  • Prosthesis loosening is a common implant failure caused by insufficient bonding between the implant and surrounding bone, often compounded by bacterial infection and biofilm.
  • Using bioconductive and biodegradable calcium phosphate (CaP) coatings with incorporated antibacterial agents can enhance both bone integration and combat bacterial growth.
  • This study focuses on creating Cu-doped CaP coatings with better porosity and antibacterial properties, showing good biocompatibility and effective antimicrobial action against various bacterial strains.

Article Abstract

Prosthesis loosening due to lack of osteointegration between an implant and surrounding bone tissue is one of the most common causes of implant failure. Further, bacterial contamination and biofilm formation onto implants represent a serious complication after surgery. The enhancement of osteointegration can be achieved by using bioconductive materials that promote biological responses in the body, stimulating bone growth and thus bonding to tissue. Through the incorporation of antibacterial substances in bioconductive, biodegradable calcium phosphate (CaP) coatings, faster osteointegration and bactericidal properties can be achieved. In this study, Cu-doped CaP supraparticles are spray-dried and suspension-sprayed CaP ceramic coatings with antibacterial properties are prepared using high-velocity suspension flame spraying (HVSFS). The objective was to increase the coatings' porosity and investigate which Cu-doped supraparticles have the strongest antibacterial properties when introduced into the coating layers. Biocompatibility was tested on human Osteosarcoma cells MG63. A porosity of at least 13% was achieved and the supraparticles could be implemented, enhancing it up to 16%. The results showed that the addition of Cu-doped supraparticles did not significantly reduce the number of viable cells compared to the Cu-free sample, demonstrating good biocompatibility. The antimicrobial activity was assessed against the bacterial strains and , with Safe Airborne Antibacterial testing showing a significant reduction in both Gram-positive and Gram-negative strains on the Cu-doped coatings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11509040PMC
http://dx.doi.org/10.3390/jfb15100281DOI Listing

Publication Analysis

Top Keywords

antibacterial properties
12
calcium phosphate
8
coatings antibacterial
8
cu-doped supraparticles
8
antibacterial
5
suspension-sprayed calcium
4
coatings
4
phosphate coatings
4
properties
4
properties prosthesis
4

Similar Publications

Crystal Violet (CV) is a vibrant and harmful dye known for its toxicity to aquatic life and potential carcinogenic effects on humans. This study explores the removal of CV through photocatalysis driven by visible light, as well as examining the antibacterial and antibiofilm characteristics of zinc oxide nanoparticles (ZnO NPs) synthesized from the aerial roots of Ficus benghalensis. Various characterization techniques were employed to confirm the optical properties, crystal lattices, and morphology of ZnO NPs.

View Article and Find Full Text PDF

Achieving ultrahigh permeance and superoleophobicity is crucial for membrane application. Here, we demonstrated that a poly(ionic liquid)/PES hydrogel membrane can achieve dual goals. The high polarity of the ionic liquids induces the water molecules on the membrane surface to be arranged more ordered, as verified by molecular dynamics (MD) simulation and advanced femtosecond sum frequency generation (SFG) vibrational spectroscopy.

View Article and Find Full Text PDF

Placenta tissue has biological advantages, including anti-inflammatory, anti-bacterial, anti-fibrotic formation, and immunomodulatory properties. The amnion membrane (AM) is an inner side membrane of the placenta that faces the fetus. The main sources of amnion are humans and animals, with bovine being one of the significant sources.

View Article and Find Full Text PDF

Aim: 3D-printed scaffolds loaded with healing directed agents could be employed for better treatment outcome in regenerative dentistry. The aim of this study was to fabricate and characterize simple 3D-printed poly lactic acid (PLA) scaffolds coated with nanoHydroxyapatite (nHA), Naringin (NAR), or their combination, and testing their morphological, chemical, mechanical, antibacterial, biocompatible and bioactive properties.

Methodology: Two variants pore sizes, 300 and 700 μm, of 3D-printed PLA disc scaffolds measuring (10 × 1 mm) were fabricated.

View Article and Find Full Text PDF

Combination of rapamycin and adipose-derived mesenchymal stromal cells enhances therapeutic potential for osteoarthritis.

Stem Cell Res Ther

January 2025

IRMB, Univ Montpellier, INSERM, CHU St Eloi, 80 AV A Fliche, 34295-Cedex-05, Montpellier, France.

Background: The regenerative potential of mesenchymal stromal/stem cells (MSCs) has been extensively studied in clinical trials in the past decade. However, despite the promising regenerative properties documented in preclinical studies, for instance in osteoarthritis (OA), the therapeutic translation of these results in patients has not been fully conclusive. One factor contributing to this therapeutic barrier could be the presence of senescent cells in OA joints.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!