The goal of this study was to identify the spatial resolution requirements for accurate rotor detection and localization in human right ventricular tachyarrhythmias. Poor spatial resolution is often cited as a reason for the inaccuracy of cardiac mapping catheters in detecting and localizing arrhythmia rotors. High-resolution (0.7 mm) arrhythmia data from optical recordings obtained from human donor hearts (n = 12) were uniformly downsampled to lower resolutions (1.4-7 mm) to approximate the spatial resolution (4 mm) of clinical mapping catheters. Rotors were tracked at various subresolutions and compared to the rotors in the original data by computing F1-scores to create accuracy profiles for both rotor detection and localization. Further comparisons were made according to arrhythmia type, donor sex, anatomical region, and mapped surface: endocardium or epicardium. For a spatial resolution of 4.2 mm, the accuracies of rotor detection and localization were 57% ± 4% and 61% ± 7%, respectively. Arrhythmia type affected the accuracy of rotor detection (monomorphic ventricular tachycardia, 58% ± 4%; ventricular fibrillation, 56% ± 8%) and localization (monomorphic ventricular tachycardia, 70% ± 4%; ventricular fibrillation, 54% ± 13%). However, donor sex, anatomical region (right ventricular outflow tract, mid, and apical), and mapped surface (epicardium and endocardium) did not significantly affect rotor detection or localization accuracy. To achieve rotor detection accuracy of 80%, a spatial resolution of 1.4 mm or better is needed. The accuracy profiles provided here serve as a guideline for future mapping device development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11508746 | PMC |
http://dx.doi.org/10.3390/jcdd11100322 | DOI Listing |
Metabolism
December 2024
College of Pharmacy and Medical Research Center, Chungbuk National University, Cheongju, Chungbuk, South Korea. Electronic address:
Background & Aims: Metabolic dysfunction-associated steatotic liver (MASLD) progression is driven by chronic inflammation and fibrosis, largely influenced by Kupffer cell (KC) dynamics, particularly replenishment of pro-inflammatory monocyte-derived KCs (MoKCs) due to increased death of embryo-derived KCs. Adenosine A3 receptor (A3AR) plays a key role in regulating metabolism and immune responses, making it a promising therapeutic target. This study aimed to investigate the impact of selective A3AR antagonism for regulation of replenished MoKCs, thereby improving MASLD.
View Article and Find Full Text PDFEur J Radiol
December 2024
Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, PO Box 5800, 6202 AZ Maastricht, the Netherlands; Mental Health and Sciences (MHeNs) Research Institute, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands.
Objectives: Photon-counting detector CT (PCD-CT) is expected to substantially improve and expand CT-imaging applicability due to its intrinsic spectral capabilities, increased spatial resolution, reduced electronic noise, and improved image contrast. The current study aim is to evaluate PCD-CT efficacy in characterizing bullets based on their dimensions, shape, and material composition.
Materials And Methods: This is an observational phantom study examining 11 unfired, intact bullets of various common calibers, placed in ballistic gelatin.
Eur J Nucl Med Mol Imaging
December 2024
Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Freiburgstrasse 18, Bern, 3010, Switzerland.
Purpose: Long axial field-of-view (LAFOV) positron emission tomography/computed tomography (PET/CT) scanners enable high sensitivity and wide anatomical coverage. Therefore, they seem ideal to perform post-selective internal radiation therapy (SIRT) Y scans, which are needed, to confirm that the dose is delivered to the tumors and that healthy organs are spared. However, it is unclear to what extent the use of LAFOV PET is feasible and which dosimetry approaches results in accurate measurements.
View Article and Find Full Text PDFSci Rep
December 2024
Ocean Sciences Department, University of California, Santa Cruz, Santa Cruz, CA, USA.
Stable isotopes of carbon (δC) and nitrogen (δN) are commonly employed to reconstruct past change in marine ecosystems and nutrient cycling. However, multiple biogeochemical and physical drivers govern spatiotemporal variability of these isotopic signals, particularly in dynamic coastal systems, complicating interpretation. Here, we coupled a modern multi-year (2010-2019) δC and δN isoscape record from intertidal mussels (Mytilus californianus) with high-resolution ocean model output and satellite chlorophyll-a observations in the California Current System (32°-43° N) to identify major drivers of isotopic variability.
View Article and Find Full Text PDFCell Rep Methods
December 2024
Portrai, Inc., Dongsullagil, 78-18 Jongrogu, Seoul, Republic of Korea; Department of Nuclear Medicine, Seoul National University Hospital, 03080 Seoul, Republic of Korea; Department of Nuclear Medicine, Seoul National University College of Medicine, 03080 Seoul, Republic of Korea. Electronic address:
Spatially resolved transcriptomics (ST) has revolutionized the field of biology by providing a powerful tool for analyzing gene expression in situ. However, current ST methods, particularly barcode-based methods, have limitations in reconstructing high-resolution images from barcodes sparsely distributed in slides. Here, we present SuperST, an algorithm that enables the reconstruction of dense matrices (higher-resolution and non-zero-inflated matrices) from low-resolution ST libraries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!