: A biocomposite based on magnesium-doped hydroxyapatite and enriched with amoxicillin (MgHApOx) was synthesized using the coprecipitation method and is presented here for the first time. : The stability of MgHAp and MgHApOx suspensions was evaluated by ultrasound measurements. The structure of the synthesized MgHAp and MgHApOx was examined with X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). The crystalline structure was determined by X-ray diffraction. The FTIR data were collected in the range of 4000-400 cm. The morphology of the nanoparticles was evaluated by scanning electron microscopy (SEM). Furthermore, the biocompatible properties of MgHAp, MgHApOx and amoxicillin (Ox) suspensions were assessed using human fetal osteoblastic cells (hFOB 1.19 cell line). The antimicrobial properties of the MgHAp, MgHApOx and Ox suspension nanoparticles were assessed using the standard reference microbial strains ATCC 25923, ATCC 25922 and ATCC 10231. : X-ray studies have shown that the biocomposite retains the characteristics of HAp and amoxicillin. The SEM assessment exhibited that the apatite contains particles at nanometric scale with acicular flakes morphology. The XRD and SEM results exhibited crystalline nanoparticles. The average crystallite size calculated from XRD analysis increased from 15.31 nm for MgHAp to 17.79 nm in the case of the MgHApOx sample. The energy-dispersive X-ray spectroscopy (EDS) and X-ray photoelectron spectroscopy (XPS) analysis highlighted the presence of the constituent elements of MgHAp and amoxicillin. Moreover, XPS confirmed the substitution of Ca ions with Mg and the presence of amoxicillin constituents in the MgHAp lattice. The results of the in vitro antimicrobial assay demonstrated that MgHAp, MgHApOx and Ox suspensions exhibited good antimicrobial activity against the tested microbial strains. The results showed that the antimicrobial activity of the samples was influenced by the presence of the antibiotic and also by the incubation time. : The findings from the biological assays indicate that MgHAp and MgHApOx are promising candidates for the development of new biocompatible and antimicrobial agents for biomedical applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11504330 | PMC |
http://dx.doi.org/10.3390/antibiotics13100963 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!