From Geometry of Hamiltonian Dynamics to Topology of Phase Transitions: A Review.

Entropy (Basel)

Aix-Marseille Univ, CNRS, Université de Toulon, 13288 Marseille, France.

Published: October 2024

In this review work, we outline a conceptual path that, starting from the numerical investigation of the transition between weak chaos and strong chaos in Hamiltonian systems with many degrees of freedom, comes to highlight how, at the basis of equilibrium phase transitions, there must be major changes in the topology of submanifolds of the phase space of Hamiltonian systems that describe systems that exhibit phase transitions. In fact, the numerical investigation of Hamiltonian flows of a large number of degrees of freedom that undergo a thermodynamic phase transition has revealed peculiar dynamical signatures detected through the energy dependence of the largest Lyapunov exponent, that is, of the degree of chaoticity of the dynamics at the phase transition point. The geometrization of Hamiltonian flows in terms of geodesic flows on suitably defined Riemannian manifolds, used to explain the origin of deterministic chaos, combined with the investigation of the dynamical counterpart of phase transitions unveils peculiar geometrical changes of the mechanical manifolds in correspondence to the peculiar dynamical changes at the phase transition point. Then, it turns out that these peculiar geometrical changes are the effect of deeper topological changes of the configuration space hypersurfaces ∑v=VN-1(v) as well as of the manifolds {Mv=VN-1((-∞,v])}v∈R bounded by the ∑. In other words, denoting by vc the critical value of the average potential energy density at which the phase transition takes place, the members of the family {∑v}vvc; additionally, the members of the family {Mv}v>vc are not diffeomorphic to those of {Mv}v>vc. The topological theory of the deep origin of phase transitions allows a unifying framework to tackle phase transitions that may or may not be due to a symmetry-breaking phenomenon (that is, with or without an order parameter) and to finite/small systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11507261PMC
http://dx.doi.org/10.3390/e26100840DOI Listing

Publication Analysis

Top Keywords

phase transitions
24
phase transition
16
phase
11
numerical investigation
8
hamiltonian systems
8
degrees freedom
8
hamiltonian flows
8
peculiar dynamical
8
transition point
8
peculiar geometrical
8

Similar Publications

Surface induced crystallization/amorphization of phase change materials.

Nanotechnology

January 2025

MME, Wright State University, 3640 Colonel Glenn Hwy, Lake Campus, 7600 Lake Drive, Lake Campus, Fairborn, Ohio, 45435, UNITED STATES.

Surface induced crystallization/amorphization of a Germanium-antimony-tellurium (GST) nanolayer is investigated using the phase field model. A Ginzburg-Landau (GL) equation introduces an external surface layer (ESL) within which the surface energy and elastic properties are properly distributed. Next, the coupled GL and elasticity equations for the crystallization/amorphization are solved.

View Article and Find Full Text PDF

Massive Dirac fermions, which are essential for realizing novel topological phenomena, are expected to be generated from massless Dirac fermions by breaking the related symmetry, such as time-reversal symmetry in topological insulators or crystal symmetry in topological crystalline insulators. Here, we report scanning tunneling microscopy and angle-resolved photoemission spectroscopy studies of α-Bi_{4}I_{4}, which reveals the realization of massive Dirac fermions in the (100) surface states without breaking the time-reversal symmetry. Combined with first-principles calculations, our experimental results indicate that the spontaneous symmetry breaking engenders two nondegenerate edge states at the opposite sides of monolayer Bi_{4}I_{4} after the structural phase transition, imparting mass to the Dirac fermions after taking the interlayer coupling into account.

View Article and Find Full Text PDF

A key objective in nuclear and high-energy physics is to describe nonequilibrium dynamics of matter, e.g., in the early Universe and in particle colliders, starting from the standard model of particle physics.

View Article and Find Full Text PDF

Interfacial Dripping Faucet: Generating Monodisperse Liquid Lenses.

Phys Rev Lett

December 2024

Carlos III University of Madrid, Thermal and Fluids Engineering Department, Avenida de la Universidad, 30 (Sabatini building), 28911 Leganés (Madrid), Spain.

We present a surface analog to a dripping faucet, where a viscous liquid slides down an immiscible meniscus. Periodic pinch-off of the dripping filament is observed, generating a succession of monodisperse floating lenses. We show that this interfacial dripping faucet can be described analogously to its single-phase counterpart, replacing surface tension by the spreading coefficient, and even undergoes a transition to a jetting regime.

View Article and Find Full Text PDF

Studying the properties and phase diagram of iron at high-pressure and high-temperature conditions has relevant implications for Earth's inner structure and dynamics and the temperature of the inner core boundary (ICB) at 330 GPa. Also, a hexagonal-closed packed to body-centered cubic (bcc) phase transition has been predicted by many theoretical works but observed only in a few experiments. The recent coupling of high-power laser with advanced x-ray sources from synchrotrons allows for novel approaches to address these issues.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!