A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Performance Comparison of Bio-Inspired Algorithms for Optimizing an ANN-Based MPPT Forecast for PV Systems. | LitMetric

Performance Comparison of Bio-Inspired Algorithms for Optimizing an ANN-Based MPPT Forecast for PV Systems.

Biomimetics (Basel)

Facultad de Ingeniería, Universidad Autónoma de Querétaro, Santiago de Queretaro 76010, Mexico.

Published: October 2024

AI Article Synopsis

  • The study evaluates various bio-inspired optimization algorithms to improve an Artificial Neural Network (ANN) for Maximum Power Point Tracking (MPPT) in photovoltaic systems under partial shading.
  • GWO outperformed other algorithms with the best prediction accuracy and efficiency, while PSO also performed well but with a longer execution time.
  • Future applications aim to enhance solar energy efficiency in changing weather and integrate renewable sources into smart grids for improved energy distribution.

Article Abstract

This study compares bio-inspired optimization algorithms for enhancing an ANN-based Maximum Power Point Tracking (MPPT) forecast system under partial shading conditions in photovoltaic systems. Four algorithms-grey wolf optimizer (GWO), particle swarm optimization (PSO), squirrel search algorithm (SSA), and cuckoo search (CS)-were evaluated, with the dataset augmented by perturbations to simulate shading. The standard ANN performed poorly, with 64 neurons in Layer 1 and 32 in Layer 2 (MSE of 159.9437, MAE of 8.0781). Among the optimized approaches, GWO, with 66 neurons in Layer 1 and 100 in Layer 2, achieved the best prediction accuracy (MSE of 11.9487, MAE of 2.4552) and was computationally efficient (execution time of 1198.99 s). PSO, using 98 neurons in Layer 1 and 100 in Layer 2, minimized MAE (2.1679) but had a slightly longer execution time (1417.80 s). SSA, with the same neuron count as GWO, also performed well (MSE 12.1500, MAE 2.7003) and was the fastest (987.45 s). CS, with 84 neurons in Layer 1 and 74 in Layer 2, was less reliable (MSE 33.7767, MAE 3.8547) and slower (1904.01 s). GWO proved to be the best overall, balancing accuracy and speed. Future real-world applications of this methodology include improving energy efficiency in solar farms under variable weather conditions and optimizing the performance of residential solar panels to reduce energy costs. Further optimization developments could address more complex and larger-scale datasets in real-time, such as integrating renewable energy sources into smart grid systems for better energy distribution.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505836PMC
http://dx.doi.org/10.3390/biomimetics9100649DOI Listing

Publication Analysis

Top Keywords

neurons layer
16
mppt forecast
8
layer
8
layer layer
8
layer 100
8
100 layer
8
execution time
8
mae
5
performance comparison
4
comparison bio-inspired
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!