This paper introduces an enhanced Whale Optimization Algorithm, named the Multi-Swarm Improved Spiral Whale Optimization Algorithm (MISWOA), designed to address the shortcomings of the traditional Whale Optimization Algorithm (WOA) in terms of global search capability and convergence velocity. The MISWOA combines an adaptive nonlinear convergence factor with a variable gain compensation mechanism, adaptive weights, and an advanced spiral convergence strategy, resulting in a significant enhancement in the algorithm's global search capability, convergence velocity, and precision. Moreover, MISWOA incorporates a multi-population mechanism, further bolstering the algorithm's efficiency and robustness. Ultimately, an extensive validation of MISWOA through "simulation + experimentation" approaches has been conducted, demonstrating that MISWOA surpasses other algorithms and the Whale Optimization Algorithm (WOA) and its variants in terms of convergence accuracy and algorithmic efficiency. This validates the effectiveness of the improvement method and the exceptional performance of MISWOA, while also highlighting its substantial potential for application in practical engineering scenarios. This study not only presents an improved optimization algorithm but also constructs a systematic framework for analysis and research, offering novel insights for the comprehension and refinement of swarm intelligence algorithms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506474PMC
http://dx.doi.org/10.3390/biomimetics9100639DOI Listing

Publication Analysis

Top Keywords

optimization algorithm
24
whale optimization
20
algorithm woa
8
global search
8
search capability
8
capability convergence
8
convergence velocity
8
miswoa
7
optimization
6
algorithm
6

Similar Publications

Context: DNAN/DNB cocrystals, as a newly developed type of energetic material, possess superior safety and thermal stability, making them a suitable alternative to traditional melt-cast explosives. Nonetheless, an exploration of the thermal degradation dynamics of the said cocrystal composite has heretofore remained uncharted. Consequently, we engaged the ReaxFF/lg force field modality to delve into the thermal dissociation processes of the DNAN/DNB cocrystal assembly across a spectrum of temperatures, encompassing 2500, 2750, 3000, 3250, and 3500 K.

View Article and Find Full Text PDF

Development and Validation of KCPREDICT: A Deep Learning Model for Early Detection of Coronary Artery Lesions in Kawasaki Disease Patients.

Pediatr Cardiol

January 2025

Department of Infectious Disease, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, No. 1678 Dongfang Road, Pudong New Area, Shanghai, 200127, China.

Kawasaki disease (KD) is a febrile vasculitis disorder, with coronary artery lesions (CALs) being the most severe complication. Early detection of CALs is challenging due to limitations in echocardiographic equipment (UCG). This study aimed to develop and validate an artificial intelligence algorithm to distinguish CALs in KD patients and support diagnostic decision-making at admission.

View Article and Find Full Text PDF

Background: Most older patients with atrial fibrillation (AF) have comorbidities. However, it is unclear whether specific comorbidity patterns are associated with adverse outcomes. We identified comorbidity patterns and their association with mortality in multimorbid older AF patients with different multidimensional frailty.

View Article and Find Full Text PDF

Purpose: Pulmonary MRI faces challenges due to low proton density, rapid transverse magnetization decay, and cardiac and respiratory motion. The fermat-looped orthogonally encoded trajectories (FLORET) sequence addresses these issues with high sampling efficiency, strong signal, and motion robustness, but has not yet been applied to phase-resolved functional lung (PREFUL) MRI-a contrast-free method for assessing pulmonary ventilation during free breathing. This study aims to develop a reconstruction pipeline for FLORET UTE, enhancing spatial resolution for three-dimensional (3D) PREFUL ventilation analysis.

View Article and Find Full Text PDF

Papermaking wastewater consists of a sizable amount of industrial wastewater; hence, real-time access to precise and trustworthy effluent indices is crucial. Because wastewater treatment processes are complicated, nonlinear, and time-varying, it is essential to adequately monitor critical quality indices, especially chemical oxygen demand (COD). Traditional models for predicting COD often struggle with sensitivity to parameter tuning and lack interpretability, underscoring the need for improvement in industrial wastewater treatment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!