Electrochemical Analysis of Amyloid Plaques and ApoE4 with Chitosan-Coated Gold Nanostars for Alzheimer's Detection.

Biosensors (Basel)

Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.

Published: October 2024

Monitoring the progression of Alzheimer's disease (AD) is crucial for mitigating dementia symptoms, alleviating pain, and improving mobility. Traditionally, AD biomarkers like amyloid plaques are predominantly identified in cerebrospinal fluid (CSF) due to their concentrated presence. However, detecting these markers in blood is hindered by the blood-brain barrier (BBB), resulting in lower concentrations. To address this challenge and identify pertinent AD biomarkers-specifically amyloid plaques and apolipoprotein E4 (ApoE4)-in blood plasma, we propose an innovative approach. This involves enhancing a screen-printed carbon electrode (SPCE) with an immobilization matrix comprising gold nanostars (AuNSs) coated with chitosan. Morphological and electrical analyses confirmed superior dispersion and conductivity with 0.5% chitosan, supported by UV-Vis spectroscopy, cyclic voltammetry, and Nyquist plots. Subsequent clinical assays measured electrical responses to quantify amyloid-β 42 (Aβ42) (15.63-1000 pg/mL) and APoE4 levels (0.41 to 40 ng/mL) in human blood plasma samples. Differential pulse voltammetry (DPV) responses exhibited peak currents proportional to biomarker concentrations, demonstrating high linear correlations (0.985 for Aβ42 and 0.919 for APoE4) with minimal error bars. Cross-reactivity tests with mixed solutions of amyloid-β 40 (Aβ40), Aβ42, and ApoE4 indicated minimal interference between biomarkers (<3% variation), further confirming the high specificity of the developed sensor. Validation studies demonstrated a strong concurrence with the gold-standard enzyme-linked immunosorbent assay (ELISA), while interference tests indicated a minimal variation in peak currents. This improved device presents promising potential as a point-of-care system, offering a less invasive, cost-effective, and simplified approach to detecting and tracking the progression of AD. The substantial surface binding area further supports the efficacy of our method, offering a promising avenue for advancing AD diagnostics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506205PMC
http://dx.doi.org/10.3390/bios14100510DOI Listing

Publication Analysis

Top Keywords

amyloid plaques
12
gold nanostars
8
blood plasma
8
electrochemical analysis
4
analysis amyloid
4
apoe4
4
plaques apoe4
4
apoe4 chitosan-coated
4
chitosan-coated gold
4
nanostars alzheimer's
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!