Flexible electronics show wide application prospects in electronic skin, health monitoring, and human-machine interfacing. As an essential part of flexible electronics, flexible pressure sensors have become a compelling subject of academic research. There is an urgent need to develop piezoelectric sensors with high sensitivity and stability. In this work, the high flexibility of polylactic acid (PLA) film and the excellent ferroelectric properties and high dielectric constant of tetragonal barium titanate (BTO) led to their use as filling materials to fabricate flexible piezoelectric composite films by spinning coating. PLA is used to produce flexible binding substrates, and BTO is added to the composite to enhance its electrical output by improving its piezoelectric performance. The peak output voltage of the PLA/BTO tetragonal piezoelectric film is 22.57 V, and the maximum short-circuit current was 3041 nA. Durability tests showed that during 40,000 s of continuous operation, in the range of 15~120 kPa, the linear relationship between pressure and the film was excellent, the sensitivity for the output voltage is 0.176 V/kPa, and the output current is 27.77 nA/kPa. The piezoelectric pressure sensor (PPS) also enables accurate motion detection, and the extensive capabilities of the PENG highlight its potential in advancing motion sensing and human-computer interactions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506190 | PMC |
http://dx.doi.org/10.3390/bios14100508 | DOI Listing |
Adv Sci (Weinh)
January 2025
Helmholtz-Zentrum Hereon, Institute of Membrane Research, Max Planck Str. 1, 21502, Geesthacht, Germany.
This work proposes a fuel cell power supply system for underwater applications (e.g., autonomous underwater vehicles), where artificial gills, based on a polymer membrane, harvest the required oxygen from the ambient water.
View Article and Find Full Text PDFJ Contemp Dent Pract
September 2024
Department of Preventive and Restorative Dentistry, School of Dental Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.
Aim: The purpose of this study is to investigate the interchangeability of newly acquired, short-term used, and long-term used semi-adjustable articulators.
Materials And Methods: Metal analogs of partially dentate maxillary and mandibular arches were mounted on twelve semi-adjustable Stratos 300 articulators, divided into three groups based on usage over time: New, short-term used (<2 years), long-term used (>2 years) articulators. Each articulator was calibrated according to manufacturer guidelines, ensuring consistency.
Biomacromolecules
January 2025
Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China.
Silk fibroin (SF) hydrogel has been proven to have excellent applications in the field of pressure sensors, but its sensing performance still needs improvement. A flexible hydrogel prepared from natural macromolecular materials was developed, and lignin nanoparticles (LNPs) were introduced during the preparation of the SF hydrogel. When LNPs account for 3% of SF, the sensing unit of the SF-LNPs hydrogel exhibits high stress sensitivity (1.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
The key Laboratory for Green Organic Synthesis and Application of Hunan Province, College of Chemistry, Xiangtan University, Xiangtan, 411105, China. Electronic address:
Background: Viral epidemics have long endangered human health and had dramatic impacts on environment and society. The currently known viruses and the rapid emergence of previously unknown viruses lead to an urgent need for effective virus detection strategies. It is important to develop methods that can detect multiple related viruses simultaneously in order to improve detection efficiency and to avoid treatment delays due to misdiagnoses.
View Article and Find Full Text PDFAdv Mater
January 2025
Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China.
Hydrogels have received great attention due to their molecular designability and wide application range. However, they are prone to freeze at low temperatures due to the existence of mass water molecules, which can damage their flexibility and transparency, greatly limiting their use in cold environments. Although adding cryoprotectants can reduce the freezing point of hydrogels, it may also deteriorate the mechanical properties and face the risk of cryoprotectant leakage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!