21-hydroxylase deficiency (21-OHD) represents the most common form of congenital adrenal hyperplasia (CAH) due to gene pathogenic variants. Τhe aim of this study was the identification of variants in 500 subjects of Greek origin with a suspicion of 21-OHD and, by using the existing hormonal assessment and genotypes of the 500 subjects tested, to identify a biomarker that could differentiate between the heterozygotes and the cases with no pathogenic variants identified. Five hundred subjects with clinical suspicion of 21-OHD underwent gene sequencing and Multiplex Ligation Dependent Probe Amplification (MLPA). Genetic diagnosis was achieved in 27.4% of the subjects tested, most of which presented with the non-classic form (NC) of 21-OHD. Heterozygotes accounted for 42.6% of cases, whereas no pathogenic variants were identified in 27% of cases. De novo aberrations, duplications, and five novel variants were also identified. Statistical analysis revealed that the difference between the basal and 60' post-ACTH stimulation 17-hydroxyprogesterone concentrations (Δ17-OHP) could be a potential biomarker ( < 0.05) distinguishing the heterozygotes from the cases with no pathogenic variants identified, although no clear cut-off value could be set. Further analysis revealed overlapping clinical manifestations among all the subjects tested. The presented phenotypic traits of the subjects tested and the inability to identify a discriminative biochemical marker highlight the importance of comprehensive genotyping to ascertain the correct genetic diagnosis and proper genetic counselling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506624 | PMC |
http://dx.doi.org/10.3390/cimb46100635 | DOI Listing |
Protein Sci
January 2025
Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biochemistry, University of Verona, Verona, Italy.
Human succinic semialdehyde dehydrogenase is a mitochondrial enzyme fundamental in the neurotransmitter γ-aminobutyric acid catabolism. It catalyzes the NAD-dependent oxidative degradation of its derivative, succinic semialdehyde, to succinic acid. Mutations in its gene lead to an inherited neurometabolic rare disease, succinic semialdehyde dehydrogenase deficiency, characterized by mental and developmental delay.
View Article and Find Full Text PDFGenet Med
December 2024
Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA; The Manton Center for Orphan Disease Research, Boston Children's Hospital, Boston, MA; Harvard Medical School, Boston, MA.
Purpose: Genomic sequencing of newborns (NBSeq) can initiate disease surveillance and therapy for children, and may identify at-risk relatives through reverse cascade testing. We explored genetic risk communication and reverse cascade testing among families of newborns who underwent exome sequencing and had a risk for autosomal dominant disease identified.
Methods: We conducted semi-structured interviews with parents of newborns enrolled in the BabySeq Project who had a pathogenic or likely-pathogenic (P/LP) variant associated with an autosomal dominant (AD) childhood- and/or adult-onset disease returned.
Genet Med
December 2024
Movement Disorders Program, Department of Neurology and F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA. Electronic address:
Objectives: Biallelic HPDL variants have been identified as the cause of a progressive childhood-onset movement disorder, with a broad clinical spectrum from severe neurodevelopmental disorder to juvenile-onset pure hereditary spastic paraplegia type 83. This study aims at delineating the geno- and phenotypic spectra of patients with HPDL-related disease, quantitatively modelling the natural history, and uncovering genotype-phenotype associations.
Methods: A cross-sectional analysis of 90 published and one novel case was performed, employing a Human Phenotype Ontology-based approach.
Eur J Neurol
January 2025
Service de Génétique Médicale, CHU Bordeaux, Bordeaux, France.
Purpose: Heterozygous pathogenic variants in SPAST are known to cause Hereditary Spastic Paraplegia 4 (SPG4), the most common form of HSP, characterized by progressive bilateral lower limbs spasticity with frequent sphincter disorders. However, there are very few descriptions in the literature of patients carrying biallelic variants in SPAST.
Methods: Targeted Sanger sequencing, panel sequencing and exome sequencing were used to identify the genetic causes in 9 patients from 6 unrelated families with symptoms of HSP or infantile neurodegenerative disorder.
Clin Genet
December 2024
Department of Medical Genetics, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey.
Renal ciliopathies are a genetically and phenotypically heterogeneous group of diseases characterized by cystic and dysplastic kidneys. The aim of this study was to investigate the correlation between genetic changes that cause renal ciliopathies and phenotypic outcomes. The study group consisted of 137 patients diagnosed with renal ciliopathy disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!