A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Influence of Contact Lens Parameters on Cornea: Biomechanical Analysis. | LitMetric

Influence of Contact Lens Parameters on Cornea: Biomechanical Analysis.

Bioengineering (Basel)

Faculty of Optics and Optometry, Complutense University of Madrid, Arcos de Jalón 118, 28037 Madrid, Spain.

Published: September 2024

This study presents a finite element analysis to model ocular biomechanics and the interactions between the human eye and contact lenses in the closed-eye condition. The closed-eye state, where the eyelids are fully shut, presents challenges for experimental measurements due to the invasive nature of accessing and analysing the contact lens and corneal interface, making simulation tools valuable for accurate characterisation. The primary objective of this study was to examine how CLs fold and twist and their impact on the cornea when the eye is closed. The secondary aim of this study was to assess how crucial contact lens parameters (Young's modulus, base curve, and diameter) influence corneal stress distribution and the overall fit of the lens on the eye. The findings show that increasing Young's modulus significantly reduces corneal stress and promotes uniform stress distribution, making it the most influential factor for wearer comfort and safety. While base curve and diameter variations primarily affect contact area, their impact on stress distribution is minimal. This research provides insights for improving contact lens design and enhancing safety for contact lens wearers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505363PMC
http://dx.doi.org/10.3390/bioengineering11100966DOI Listing

Publication Analysis

Top Keywords

contact lens
20
stress distribution
12
lens parameters
8
young's modulus
8
base curve
8
curve diameter
8
corneal stress
8
lens
6
contact
6
influence contact
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!