Difenoconazole Induced Damage of Bovine Mammary Epithelial Cells via ER Stress and Inflammatory Response.

Cells

Department of Animal Biotechnology, College of Life Science, Sangji University, Wonju-si 26339, Republic of Korea.

Published: October 2024

Difenoconazole (DIF) is a fungicide used to control various fungi. It is absorbed on the surface of different plants and contributes significantly to increased crop production. However, DIF is reported to exhibit toxicity to fungi and to aquatic plants, fish, and mammals, including humans, causing adverse effects. However, research on the impact of DIF on the mammary epithelial cells of herbivorous bovines is limited. DIF-induced damage and accumulation in the mammary glands can have direct and indirect effects on humans. Therefore, we investigated the effects and mechanisms of DIF toxicity in MAC-T cells. The current study revealed that DIF reduces cell viability and proliferation while triggering apoptotic cell death through the upregulation of pro-apoptotic proteins, including cleaved caspase 3 and Bcl-2-associated X protein (BAX), and the downregulation of leukemia type 2 (BCL-2). DIF also induced endoplasmic reticulum (ER) stress by increasing the expression of genes or proteins of Bip/GRP78, protein disulfide isomerase (PDI), activating transcription factor 4 (ATF4), C/EBP homologous protein (CHOP), and endoplasmic reticulum oxidoreductase 1 Alpha (ERO1-Lα). We demonstrated that DIF induces mitochondria-mediated apoptosis in MAC-T cells by activating ER stress pathways. This cellular damage resulted in a significant increase in the expression of inflammatory response genes and proteins, including cyclooxygenase 2 (COX2), transforming growth factor beta 3 (TGFB3), CCAAT enhancer binding protein delta (CEBPD), and iNOS, in DIF-treated groups. In addition, spheroid formation by MAC-T cells was suppressed by DIF treatment. Our findings suggest that DIF exposure in dairy cows may harm mammary gland function and health and may indirectly affect human consumption of milk.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11506304PMC
http://dx.doi.org/10.3390/cells13201715DOI Listing

Publication Analysis

Top Keywords

mac-t cells
12
dif
9
mammary epithelial
8
epithelial cells
8
inflammatory response
8
proteins including
8
endoplasmic reticulum
8
genes proteins
8
cells
5
difenoconazole induced
4

Similar Publications

NOTCH and IGF1 signaling systems are involved in the effects exerted by anthelminthic treatment of heifers on the bovine mammary gland.

Vet Parasitol

January 2025

Centro de Investigaciones Básicas y Aplicadas, Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Junín, Buenos Aires 6000, Argentina; Centro de Investigaciones y Transferencia del Noroeste de la Provincia de Buenos Aires, CITNOBA, UNNOBA - UNSAdA - CONICET, Monteagudo 2772, Pergamino, Buenos Aires 2700, Argentina. Electronic address:

Dairy heifers with gastrointestinal nematodes have reduced growth rates, and delayed age at puberty and milk production onset related to late mammary gland development. IGF1 and Notch signaling systems are important in this process, and an altered profile of serum IGF1 has been associated with the detrimental effect of the nematodes on parenchymal development. In this context, we aimed to study the molecular mechanisms involved in bovine mammary gland development around pre and postpuberty, focusing on proliferative and angiogenic processes that involve the Notch and IGF1 pathways.

View Article and Find Full Text PDF

Lipoteichoic acid (LTA), an organic acid of Gram-positive bacteria, is closely related to mastitis in dairy cows. This study evaluates the effect of LTA-induced endoplasmic reticulum stress (ER stress) in vitro using MAC-T (mammary epithelial cells) and in dairy cows with mastitis. LTA stimulation significantly increases ER stress and apoptosis-related factors in MAC-T.

View Article and Find Full Text PDF

VPS28 (vacuolar protein sorting 28) is a subunit of the endosomal sorting complexes required for transport (ESCRTs) and is involved in ubiquitination. Ubiquitination is a critical system for protein degradation in eukaryotes. Considering the recent findings on the role of ubiquitination in the regulation of lipid metabolism, we hypothesized that VPS28 might affect the expression of genes involved in milk fat synthesis.

View Article and Find Full Text PDF

In clinical mastitis of dairy cows, the abnormal accumulation of apoptotic cells (ACs) and subsequent secondary necrosis and inflammation pose significant concerns, with macrophage-mediated efferocytosis, crucial for ACs clearance, remaining unexplored in this context. In nonruminants, MER proto-oncogene tyrosine kinase (MERTK) receptors are essential for efferocytosis and A Disintegrin and Metalloproteinase 17 (ADAM17) is thought to play a role in regulating MERTK integrity. This study aimed to delineate the in situ role of efferocytosis in clinical mastitis, with a particular focus on the interaction between MERTK and ADAM17 in bovine macrophages.

View Article and Find Full Text PDF

Heat Tolerance-Associated circRNA3685 Regulates Apoptosis and Autophagy in Bovine Mammary Epithelial Cells via Sponging bta-miR-138.

J Agric Food Chem

January 2025

Key Laboratory of Animal Genetics, Breeding and Reproduction, MARA, National Engineering Laboratory for Animal Breeding, Beijing Engineering Technology Research Center of Raw Milk Quality and Safety Control, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.

Heat stress negatively affects dairy cow production, and health, leading to significant losses. Identifying mechanisms associated with heat tolerance is crucial for developing breeding strategies. Circular RNAs (circRNAs), a type of noncoding RNA, regulate cell functions like autophagy, apoptosis and proliferation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!