A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Dynamics of high-dimensional quantum systems coupled to a harmonic bath. General theory and implementation via multiconfigurational wave packets and truncated hierarchical equations for the mean-fields. | LitMetric

Dynamics of high-dimensional quantum systems coupled to a harmonic bath. General theory and implementation via multiconfigurational wave packets and truncated hierarchical equations for the mean-fields.

J Chem Phys

Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Universitätstraße 1, 40225 Düsseldorf, Germany.

Published: October 2024

Modeling the dynamics of a quantum system coupled to a dissipative environment becomes particularly challenging when the system's dimensionality is too high to permit the computation of its eigenstates. This problem is addressed by introducing an eigenstate-free formalism, where the open quantum system is represented as a mixture of high-dimensional, time-dependent wave packets governed by coupled Schrödinger equations, while the environment is described by a multi-component quantum master equation. An efficient computational implementation of this formalism is presented, employing a variational mixed Gaussian/multiconfigurational time-dependent Hartree (G-MCTDH) ansatz for the wave packets and propagating the environment dynamics via hierarchical equations, truncated at the first or second level of the hierarchy. The effectiveness of the proposed methodology is demonstrated on a 61-dimensional model of phonon-driven vibrational relaxation of an adsorbate. G-MCTDH calculations on 4- and 10-dimensional reduced models, combined with truncated hierarchical equations for the mean fields, nearly quantitatively replicate the full-dimensional quantum dynamical results on vibrational relaxation while significantly reducing the computational time. This approach thus offers a promising quantum dynamical method for modeling complex system-bath interactions, where a large number of degrees of freedom must be explicitly considered.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0233708DOI Listing

Publication Analysis

Top Keywords

wave packets
12
hierarchical equations
12
truncated hierarchical
8
quantum system
8
vibrational relaxation
8
quantum dynamical
8
quantum
6
dynamics high-dimensional
4
high-dimensional quantum
4
quantum systems
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!