Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Flexible large strain sensors are an ideal choice for monitoring human motion, but the current use of flexible strain gauges is hindered by the need for external power sources and long-term operation requirements. Fiber-based sensors, due to their high flexibility, excellent breathability, and the ease with which they can be embedded into everyday clothing, have the potential to become a novel type of wearable electronic device. This paper proposes a flexible self-powered strain sensing material based on the electromagnetic induction effect, composed of a uniform mixture of Ecoflex and NdFeB, which has good skin-friendliness and high stretchability of over 100%. The voltage output of the magnetoelectric composite fiber remains stable over 5000 stretch-release cycles, reaching up to 969 μV. Based on this novel sensing material, a remote smart car control scheme for a human-machine interaction system was designed, enabling real-time gesture interaction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.4c01991 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!