The tumour suppressor factor p53 plays an essential role in regulating numerous cellular processes, including the cell cycle, DNA repair, apoptosis, autophagy, cell metabolism and immune response. TP53 is the most commonly mutated gene in human cancers. These mutations are primarily non‑synonymous changes that produce mutant p53 proteins characterized by loss of function, a dominant negative effect on p53 tetramerisation and gain of function (GOF). GOF mutations not only disrupt the tumour‑suppressive activities of p53 but also endow the mutant proteins with new oncogenic properties. Recent studies analysing different pathogenic features of mutant p53 in cancer‑derived cell lines have demonstrated that restoring wild‑type p53, rather than removing GOF mutations, reduces cancer cell growth. These findings suggest that therapeutic strategies for reactivating wild‑type p53 function in cancer cells may bring a greater benefit than approaches halting mutant p53. This approach could involve the use of small molecules, gene therapy and other methods to re‑establish wild‑type p53 activity. This review describes the complexity of the biological activities of different p53 mutants and summarizes the current therapeutic approaches to restore p53 function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11554381 | PMC |
http://dx.doi.org/10.3892/ijmm.2024.5448 | DOI Listing |
Hum Pathol
January 2025
Laboratory of Pathology, National Cancer Institute, Bethesda, Maryland.
Colorectal carcinoma brain metastases (n=60) were studied using next-generation sequencing and immunohistochemistry. RAS and BRAF mutations were detected in 58.2% and 7.
View Article and Find Full Text PDFActa Neuropathol
January 2025
Pathology Unit, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.
The foremost feature of glioblastoma (GBM), the most frequent malignant brain tumours in adults, is a remarkable degree of intra- and inter-tumour heterogeneity reflecting the coexistence within the tumour bulk of different cell populations displaying distinctive genetic and transcriptomic profiles. GBM with primitive neuronal component (PNC), recently identified by DNA methylation-based classification as a peculiar GBM subtype (GBM-PNC), is a poorly recognized and aggressive GBM variant characterised by nodules containing cells with primitive neuronal differentiation along with conventional GBM areas. In addition, the presence of a PNC component has been also reported in IDH-mutant high-grade gliomas (HGGs), and to a lesser extent to other HGGs, suggesting that regardless from being IDH-mutant or IDH-wildtype, peculiar genetic and/or epigenetic events may contribute to the phenotypic skewing with the emergence of the PNC phenotype.
View Article and Find Full Text PDFCancer Chemother Pharmacol
January 2025
Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, VA, USA.
Purpose: Relapsed and/or refractory acute myeloid leukemia and high-risk myelodysplastic syndrome continue to have a poor prognosis with limited treatment options despite advancements in rational combination and targeted therapies. Belinostat (an HDAC inhibitor) and Pevonedistat (a NEDD8 inhibitor) have each been independently studied in hematologic malignancies and have tolerable safety profiles with limited single-agent activity. Preclinical studies in AML cell lines and primary AML cells show the combination to be highly synergistic, particularly in high-risk phenotypes such as p53 mutant and FLT-3-ITD positive cells.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Comparative Molecular Endocrinology, Ulm University, 89081, Ulm, Germany.
Hepatocellular carcinoma (HCC) remains the most prevalent type of primary liver cancer worldwide. p53 is one of the most frequently mutated tumor-suppressor genes in HCC and its deficiency in hepatocytes triggers tumor formation in mice. To investigate iron metabolism during liver carcinogenesis, we employed a model of chronic carbon tetrachloride injections in liver-specific p53-deficient mice to induce liver fibrosis, cirrhosis and subsequent carcinogenesis.
View Article and Find Full Text PDFExpert Rev Proteomics
January 2025
College of Medicine, QU Health, Qatar University, Doha, Qatar.
Objective: Our study presents a novel analysis of the oncogenes and tumor suppressor proteins directly modulated by E6/E7 of high-risk HPV types 16 and 18, in colorectal cancer (CRC).
Methods: HCT 116 (KRAS mutant) & HT-29 (TP53 mutant) cell models of CRC were transduced with E6/E7 of HPV16 and HPV18, individually and in combination. Further, we utilized a liquid chromatography mass spectrometry (LC-MS/MS) approach to analyze and compare the proteomes of both CRC cell models.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!