A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Monolayers of a thiacalix[3]pyridine-supported molybdenum(0) tricarbonyl complex on Au(111): characterisation with surface spectroscopy and scanning tunneling microscopy. | LitMetric

AI Article Synopsis

  • Researchers are developing a new method for creating single-site catalysts by depositing dome-shaped metal-organic complexes on metallic surfaces, combining characteristics of both homogeneous and heterogeneous catalysis.
  • A specific molybdenum(0) tricarbonyl complex, supported by thiacalix[3]pyridine, is synthesized and deposited on gold and silver surfaces through vacuum evaporation.
  • The study uses surface spectroscopy and STM to show that the complex remains parallel to the surface and exhibits improved stability and lower reactivity towards oxygen compared to a similar complex with an azacalixpyridine ligand.

Article Abstract

Deposition of dome-shaped metal-organic complexes on metallic surfaces to produce well-defined single site catalysts is a novel approach combining aspects of homogeneous and heterogeneous catalysis. In order to investigate the bonding of small molecules to such systems, a molybdenum(0) tricarbonyl complex supported by a thiacalix[3]pyridine is synthesized and deposited on Au(111) and Ag(111) surfaces by vacuum evaporation. The resulting mono- and submonolayers are investigated with surface spectroscopy and STM. All of these methods indicate a parallel orientation of the molybdenum complex with respect to the surface. The vibrational properties and frequency shifts of the adsorbed complexes with respect to the bulk are evaluated with the help of conventional IR and IRRA spectroscopy, coupled to DFT calculations. Compared to a similar Mo(0) tricarbonyl complex supported by an azacalixpyridine ligand, the title complex exhibits a higher stability in the bulk and adsorbed to surfaces which goes along with a lower reactivity towards oxygen.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d4dt02521kDOI Listing

Publication Analysis

Top Keywords

tricarbonyl complex
12
molybdenum0 tricarbonyl
8
surface spectroscopy
8
complex supported
8
complex
5
monolayers thiacalix[3]pyridine-supported
4
thiacalix[3]pyridine-supported molybdenum0
4
complex au111
4
au111 characterisation
4
characterisation surface
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!