A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Automated Breast Density Assessment for Full-Field Digital Mammography and Digital Breast Tomosynthesis. | LitMetric

Mammographic density is a strong risk factor for breast cancer and is reported clinically as part of Breast Imaging Reporting and Data System (BI-RADS) results issued by radiologists. Automated assessment of density is needed that can be used for both full-field digital mammography (FFDM) and digital breast tomosynthesis (DBT) as both types of exams are acquired in standard clinical practice. We trained a deep learning model to automate the estimation of BI-RADS density from a prospective Washington University clinic-based cohort of 9,714 women, entering into the cohort in 2013 with follow-up through October 31, 2020. The cohort included 27% non-Hispanic Black women. The trained algorithm was assessed in an external validation cohort that included 18,360 women screened at Emory from January 1, 2013, and followed up through December 31, 2020, that included 42% non-Hispanic Black women. Our model-estimated BI-RADS density demonstrated substantial agreement with the density as assessed by radiologists. In the external validation, the agreement with radiologists for category B 81% and C 77% for FFDM and B 83% and C 74% for DBT shows important distinction for separation of women with dense breast. We obtained a Cohen's κ of 0.72 (95% confidence interval, 0.71-0.73) in FFDM and 0.71 (95% confidence interval, 0.69-0.73) in DBT. We provided a consistent and fully automated BI-RADS estimation for both FFDM and DBT using a deep learning model. The software can be easily implemented anywhere for clinical use and risk prediction. Prevention Relevance: The proposed model can reduce interobserver variability in BI-RADS density assessment, thereby providing more standard and consistent density assessment for use in decisions about supplemental screening and risk assessment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11701431PMC
http://dx.doi.org/10.1158/1940-6207.CAPR-24-0338DOI Listing

Publication Analysis

Top Keywords

density assessment
12
bi-rads density
12
density
8
full-field digital
8
digital mammography
8
digital breast
8
breast tomosynthesis
8
deep learning
8
learning model
8
cohort included
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!