Synthesis, XRD structural analysis and theoretical studies of a potential inhibitor against rheumatoid arthritis (RA).

Acta Crystallogr C Struct Chem

Instituto de Física de São Carlos, Universidade de São Paulo, USP, Avenida Trabalhador São-Carlense, No. 400 Parque Arnold Schmidt - CEP 13566-590, São Carlos, SP, Brazil.

Published: November 2024

AI Article Synopsis

  • The study examines N-(5-nitrothiazol-2-yl)furan-2-carboxamide (NTFC) as a potential inhibitor for rheumatoid arthritis, focusing on its synthesis and crystallization techniques.
  • NTFC has a unique structure featuring thiazole and furan rings connected by a planar C-N-C(=O)-C segment; crystal analysis revealed significant hydrogen bonding and effective molecular interactions.
  • Molecular docking studies indicated that NTFC may effectively inhibit the DHODH enzyme, showing promising coupling energies similar to leflunomide, a known rheumatoid arthritis treatment.

Article Abstract

This work focused on analyzing the properties of N-(5-nitrothiazol-2-yl)furan-2-carboxamide (CHNOS, NTFC) as a possible inhibitor of the rheumatoid arthritis process. The synthesis of NTFC was carried out and good-quality crystals were obtained and studied by NMR (H and C), DEPT 135, UV-Vis, IR, MS and single-crystal X-ray diffraction. The structure of NTFC consists of two rings, thiazole and furan, and a central C-N-C(=O)-C segment, which appears to be planar. This central amide segment forms angles of 2.61 (10) and 7.97 (11)° with the planes of the thiazole and furan rings, respectively. The crystal structure of NTFC exhibits N-H...N, N-H...O and C-H...O hydrogen bonds, and C-H...π and π-π interactions that facilitate self-assembly and the formation of hydrogen-bonded dimers, which implies the appearance of R(8) graph-set motifs in this interaction. The stability of the dimeric unit is complemented by the formation of strong intramolecular C-S...O interactions of chalcogen character, with an S...O distance of 2.6040 (18) Å. Hirshfeld surface (HS) analysis revealed that O...H/H...O interactions were dominant, accounting for 36.8% of the total HS, and that N-H...N interactions were fundamental to the formation of the dimeric structure. The molecular electrostatic potential (MEP) map showed a maximum energy of 46.73 kcal mol and a minimum of -36.06 kcal mol. The interaction energies of molecular pairs around NTFC are highest for those interactions linked by N-H hydrogen bonds. The properties of the NTFC ligand as a potential inhibitor of the DHODH (dihydroorotate dehydrogenase) enzyme were evaluated by molecular docking, showing coupling energies very close to those obtained with the control drug for rheumatoid arthritis, i.e. leflunomide.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S2053229624010106DOI Listing

Publication Analysis

Top Keywords

rheumatoid arthritis
12
potential inhibitor
8
inhibitor rheumatoid
8
structure ntfc
8
thiazole furan
8
hydrogen bonds
8
ntfc
6
interactions
5
synthesis xrd
4
xrd structural
4

Similar Publications

Hydrolysis of 2D Nanosheets Reverses Rheumatoid Arthritis Through Anti-Inflammation and Osteogenesis.

Adv Mater

December 2024

Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, The Institute for Biomedical Engineering & Nano Science School of Medicine, School of Medicine, Tongji University, Shanghai, 200072, P. R. China.

Rheumatoid arthritis (RA) is a kind of inflammation homeostasis disorder that dysfunctions the joints. Clinically, medications against RA focus simply on mitigating the focal inflammation, without considering pro-osteogenesis re-modeling of the bone microenvironment. In the present work, 2D layered calcium disilicide nanoparticles (CSNs) are fabricated by facile aqueous exfoliation.

View Article and Find Full Text PDF

The complex relationship between inflammation, its effects on neuronal excitability and the ensuing plasticity of dorsal root ganglion (DRG) sensory neurons remains to be fully explored. In this study, we have employed a system of experiments assessing the impact of inflammatory conditioned media derived from activated immune cells on the excitability and activity of DRG neurons and how this relates to subsequent growth responses of these cells. We show here that an early phase of increased neuronal activity in response to inflammatory conditioned media is critical for the engagement of plastic processes and that neuronal excitability profiles are linked through time to the structural phenotype of individual neurons.

View Article and Find Full Text PDF

Rhaponticin Alleviates Collagen-induced Arthritis by Inhibiting NLRP3/GSDMD-mediated Neutrophil Extracellular Traps.

Inflammation

December 2024

Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210000, China.

Neutrophil extracellular traps (NETs) play an important role in the inflammatory response and progressive joint destruction in rheumatoid arthritis (RA). Rhaponticin (Rha) is a stilbene glycoside compound with antioxidant and anti-inflammatory effects. This study aimed to investigate the therapeutic potential of Rha in RA, with a specific focus on its effects on NETs and on the underlying mechanisms of Rha.

View Article and Find Full Text PDF

In order to delay the progression of Rheumatoid Arthritis (RA) in patients, and to prevent further teratogenesis and irreversible bone erosion through drug intervention in the early stages of inflammation, this experiment used the mRNA encoding heat shock protein 10 (HSP10) (H-mRNA) as the main therapeutic drug and used Microfluidics technology to prepare lipid nanoparticles (LNP) (H-mRNA LNPs) containing H-mRNA, and the surface of H-mRNA-LNPs was modified using heparin particals to obtain the final formulation H-mRNA-LNPs @ heparin/ Protamine. Through the sequence modification and effect evaluation of H-mRNA, we explored the formulation screening, physical characterization, cytotoxicity in vitro, distribution in vivo, pharmacodynamics in vivo, and safety in vivo of the prepared lipid nanoparticles, which proved that this nano-preparation had good anti Rheumatoid Arthritis effects, and conducted a preliminary exploration for the application of nucleic acid drugs in the treatment of diseases outside of tumors. This research would provide new ideas for the treatment of RA.

View Article and Find Full Text PDF

Introduction: Inflammatory diseases, such as diabetes mellitus, rheumatoid arthritis, and inflammatory bowel disease, lead to systemic immune microenvironment disturbances, contributing to bone loss, yet the mechanisms by which specific receptors regulate this process in inflammatory bone loss remain poorly understood. As a G-protein-coupled receptor, the Apelin receptor plays a crucial role in the regulation of inflammation and immune microenvironment. However, the precise mechanisms governing its role in inflammatory bone loss remain incompletely understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!