Radiation-induced skin reactions: oxidative damage mechanism and antioxidant protection.

Front Cell Dev Biol

Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China.

Published: October 2024

AI Article Synopsis

  • Cancer is the leading cause of death, with over 50% of patients undergoing radiotherapy, which can lead to radiation-induced skin reactions (RISR) that significantly affect their quality of life.
  • The review highlights that oxidative stress (OS) is believed to be a key initial factor in the development of various types of RISRs and discusses the underlying mechanisms involved.
  • While traditional treatments for RISRs have shown limited success, the review suggests further research into novel therapeutic strategies aimed at managing oxidative stress and improving outcomes for patients.

Article Abstract

According to official statistics, cancer remains the main reason of death and over 50% of patients with cancer receive radiotherapy. However, adverse consequences after radiation exposure like radiation-induced skin reactions (RISR) have negative or even fatal impact on patients' quality of life (QoL). In this review we summarize the mechanisms and managements of RISRs, a process that involve a variety of extracellular and intracellular signals, among which oxidative stress (OS) are now commonly believed to be the initial part of the occurrence of all types of RISRs. As for the management of RISRs, traditional treatments have been widely used but without satisfying outcomes while some promising therapeutic strategies related to OS still need further researches. In the context we discuss how OS leads to the happening of RISRs of different types, hoping it can shed some light on the exploration of new countermeasures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500330PMC
http://dx.doi.org/10.3389/fcell.2024.1480571DOI Listing

Publication Analysis

Top Keywords

radiation-induced skin
8
skin reactions
8
reactions oxidative
4
oxidative damage
4
damage mechanism
4
mechanism antioxidant
4
antioxidant protection
4
protection official
4
official statistics
4
statistics cancer
4

Similar Publications

Phycocyanin-based multifunctional microspheres for treatment of infected radiation-induced skin injury.

Biomaterials

December 2024

Department of Plastic Surgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China; Zhejiang University-Ordos City Etuoke Banner Joint Research Center, Zhejiang University, Haining, 314400, China. Electronic address:

Radiation therapy is a primary modality for cancer treatment; however, it often leads to various degrees of skin injuries, ranging from mild rashes to severe ulcerations, for which no effective treatments are currently available. In this study, a multifunctional microsphere (PC@CuS-ALG) was synthesized by encapsulating phycocyanin-templated copper sulfide nanoparticles (PC@CuS) within alginate (ALG) using microfluidic technology. Phycocyanin, a natural protein derived from microalgae, shows abilities to scavenge reactive oxygen species, repair radiation-induced damage to skin cells, and ameliorate macrophage-related inflammatory responses.

View Article and Find Full Text PDF

This study explores the protective role of Atractylodin (ATN) on ultraviolet-B (UVB) radiation-exposed oxidative damage and photoaging responses in human epidermal keratinocytes (HaCaT). In vitro, experiments involved subjecting HaCaT cells to UVB radiation (50 mJ/cm) for a 24 h incubation period, leading to cell death, increased reactive oxygen species (ROS), and DNA damaged lesion (8-Oxo Gunosine). ATN treatment effectively mitigated cell toxicity, ROS generation, and 8-Oxo Gunosine in UVB-exposed HaCaT cells.

View Article and Find Full Text PDF

Reduced irradiation exposure areas enhanced anti-tumor effect by inducing DNA damage and preserving lymphocytes.

Mol Med

December 2024

State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing, 100871, China.

Background: Partial stereotactic body radiation therapy (SBRT) targeting hypoxic regions of large tumors (SBRT-PATHY) has been shown to enhance the efficacy of tumor radiotherapy by harnessing the radiation-induced immune response. This approach suggests that reducing the irradiation target volume not only achieves effective anti-tumor effects but also minimizes damage to surrounding normal tissues. In this study, we evaluated the antitumor efficacy of reduced-tumour-area radiotherapy (RTRT) , and explored the relationship between tumor control and immune preservation and the molecular mechanisms underlying of them.

View Article and Find Full Text PDF

Radiation-induced angiosarcoma (RIAS) is a rare, late adverse event of radiotherapy comprising approximately half of all radiation-induced sarcomas. It has a relatively short latency period and generally unfavorable prognosis. This study presents a case of RIAS that developed 5 years and 11 months after the completion of hypofractionated radiotherapy (42.

View Article and Find Full Text PDF

P53 and the Ultraviolet Radiation-Induced Skin Response: Finding the Light in the Darkness of Triggered Carcinogenesis.

Cancers (Basel)

November 2024

LAQV/REQUIMTE, Laboratόrio de Microbiologia, Departamento de Ciências Biolόgicas, Faculdade de Farmácia, Universidade do Porto, 4050-313 Porto, Portugal.

This review delves into the significant cellular and molecular responses triggered by UVR exposure in human skin, emphasizing the pivotal role of mutant p53 (mutp53) in the carcinogenic process elicited by radiation. By underlining the role of a functional p53 in safeguarding skin cells from UVR-induced damage, this work underscores the potential significance of targeting mutp53, aiming to restore its wild-type-like activity (reactivation), as a protective strategy against skin cancer (SC), particularly NMSC. Most importantly, an interesting crosstalk between p53 and its vitamin D receptor (VDR) transcriptional target is also highlighted in the suppression of skin carcinogenesis, which opens the way to promising chemopreventive strategies involving synergistic combinations between mutp53 reactivators and vitamin D.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!