There are relatively few field studies on the degradation of non-fluoropolymer-based backsheets, and understanding their in-field behavior is critical for further development of such products. In this study, backsheet degradation of modules with one of these new types of backsheets (polyethylene naphthalate (PEN)-based) was documented at a four-year old utility-scale array located in Maryland (USA). Visual inspection, colorimetry, glossimetry, and Fourier-transform infrared spectroscopy (FTIR) revealed highly varied properties depending on module position within the array. Specifically, modules near the edge of the array and with higher mounting elevations underwent greater amounts of backsheet degradation, as indicated by yellowing and gloss-loss. The reason for these unique degradation patterns were differential backside exposure conditions, especially of ultraviolet light. This was strongly influenced by the array design, including array structural and environmental factors, such as module spacing and ground cover, respectively. Within the array, no clear link between backsheet degradation and module output or safety has been identified. However, such a relationship may be expected to become more pronounced with time, affecting system lifetime and ultimately the levelized cost of electricity (LCOE). The observed phenomena have implications for both backsheet product development and array design, especially for modules that utilize newer classes of non-fluoropolymer-based backsheets which are typically more susceptible to environmental degradation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11500241PMC
http://dx.doi.org/10.1016/j.solener.2018.01.072DOI Listing

Publication Analysis

Top Keywords

backsheet degradation
12
degradation patterns
8
array
8
non-fluoropolymer-based backsheets
8
array design
8
degradation
6
differential degradation
4
patterns photovoltaic
4
backsheets
4
photovoltaic backsheets
4

Similar Publications

Reducing Thermal Degradation of Perovskite Solar Cells during Vacuum Lamination by Internal Diffusion Barriers.

ACS Appl Energy Mater

November 2024

National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States.

Current photovoltaic (PV) panels typically contain interconnected solar cells that are vacuum laminated with a polymer encapsulant between two pieces of glass or glass with a polymer backsheet. This packaging approach is ubiquitous in conventional photovoltaic technologies such as silicon and thin-film solar modules, contributing to thermal management, mechanical reinforcement, and environmental protection to enable the long lifetimes necessary to become financially acceptable. Commercial vacuum lamination processes typically occur at 150 °C to ensure cross-linking and/or glass bonding of the encapsulant to the glass and PV cells.

View Article and Find Full Text PDF

The current increase in the use of photovoltaic (PV) energy demands the search for solutions to recycle end-of-life modules. This study evaluated the use of a mechanical pre-treatment in the thermal recycling of c-Si crystalline PV modules, which were submitted to recycling routes to separate and concentrate the materials of interest. The first route was constituted by only thermal treatment, and the second route was constituted by a mechanical pre-treatment to remove the polymers from the backsheet, and subsequent thermal treatment.

View Article and Find Full Text PDF

Glass/glass (G/G) photovoltaic modules are quickly rising in popularity, but the durability of modern G/G packaging has not yet been established. In this work, we examine the interfacial degradation modes in G/G and glass/transparent backsheet modules under damp heat (DH) with and without system bias voltage, comparing emerging polyolefin elastomer (POE) and industry-standard poly(ethylene-co-vinyl acetate) (EVA) encapsulants. We investigate the transport of ionic species at cell/encapsulant interfaces, demonstrating that POE limits both sodium and silver ion migration compared with EVA.

View Article and Find Full Text PDF

Commercial backsheets based on polyvinylidene fluoride (PVDF) can experience premature field failures in the form of outer layer cracking. This work seeks to provide a better understanding of the changes in material properties that lead to crack formation and find appropriate accelerated tests to replicate them. The PVDF-based backsheet outer layer can have a different structure and composition, and is often blended with a poly(methyl methacrylate) (PMMA) polymer.

View Article and Find Full Text PDF

Delamination is one of the most critical failure modes of a PV module during service lifetime. Delamination within a backsheet primarily imposes a safety risk, but may also accelerate various other PV module degradation modes. The main aim of this paper is to present a peel test set-up, which is more practical in sample preparation and execution than the width-tapered cantilever beam test and overcomes some issues of standard peel tests like the influence of sample geometry and energy dissipation through deformation on the peel test results.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!