Objective: This systematic review aims to analyze and synthesize the current state of research on the role of immersive technologies, specifically augmented reality (AR), virtual reality (VR), and mixed reality (MR), in medical physics and radiation physics education. The primary focus is to evaluate their impact on learning outcomes, performance, and engagement across various educational contexts.

Methods: We conduct a comprehensive search of four major databases: Scopus, Web of Science, PubMed, and IEEE Xplore, covering the period from 2012 to 2023. A total of 316 articles are initially identified. After removing duplicates and screening for relevance based on titles and abstracts, 107 articles are selected for full-text review. Finally, 37 articles met the inclusion criteria and are included in the analysis. The review follows the PRISMA guidelines and utilizes the PICOS framework to structure the research question.

Analysis: Data extraction focuses on key variables such as the type of immersive technology used, educational context, study design, participant demographics, and measured outcomes. The studies are analyzed for their reported effects on learning outcomes, performance, and engagement.

Results: The review found that immersive technologies significantly enhance learning outcomes and engagement. Specifically, 36.4% of the studies reported increased engagement, while 63.6% of studies focusing on practical skills noted performance improvements. The use of AR, VR, and MR showed broad applicability across different educational levels, from undergraduate courses to professional training programs.

Conclusion: Immersive technologies have considerable potential to transform medical and radiation physics. They enhance student engagement, improve learning outcomes, and boost performance in practical skills. Nevertheless, future research should focus on standardizing methodologies, expanding participant demographics, and exploring long-term impacts on skill retention and clinical practice. This review provides a valuable resource for guiding future research and implementing innovative educational strategies in the dynamic fields of medical physics and radiation physics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499124PMC
http://dx.doi.org/10.3389/fmed.2024.1384799DOI Listing

Publication Analysis

Top Keywords

radiation physics
16
learning outcomes
16
medical physics
12
physics radiation
12
immersive technologies
12
systematic review
8
review immersive
8
outcomes performance
8
participant demographics
8
practical skills
8

Similar Publications

Background: Diffusing alpha-emitters Radiation Therapy ("Alpha DaRT") is a promising new radiation therapy modality for treating bulky tumors. Ra-carrying sources are inserted intratumorally, producing a therapeutic alpha-dose region with a total size of a few millimeter via the diffusive motion of Ra's alpha-emitting daughters. Clinical studies of Alpha DaRT have reported 100% positive response (30%-100% shrinkage within several weeks), with post-insertion swelling in close to half of the cases.

View Article and Find Full Text PDF

Background: X-ray grating-based dark-field imaging can sense the small angle scattering caused by object's micro-structures. This technique is sensitive to the porous microstructure of lung alveoli and has the potential to detect lung diseases at an early stage. Up to now, a human-scale dark-field CT (DF-CT) prototype has been built for lung imaging.

View Article and Find Full Text PDF

Effect of terahertz radiation on cells and cellular structures.

Front Optoelectron

January 2025

Institute of Physics, Saratov State University, Saratov, 410012, Russia.

The paper presents the results of modern research on the effects of electromagnetic terahertz radiation in the frequency range 0.5-100 THz at different levels of power density and exposure time on the viability of normal and cancer cells. As an accompanying tool for monitoring the effect of radiation on biological cells and tissues, spectroscopic research methods in the terahertz frequency range are described, and attention is focused on the possibility of using the spectra of interstitial water as a marker of pathological processes.

View Article and Find Full Text PDF

Background: Online adaptive radiotherapy (OART) and rapid quality assurance (QA) are essential for effective heavy ion therapy (HIT). However, there is a shortage of deep learning (DL) models and workflows for predicting Monte Carlo (MC) doses in such treatments.

Purpose: This study seeks to address this gap by developing a DL model for independent MC dose (MCDose) prediction, aiming to facilitate OART and rapid QA implementation for HIT.

View Article and Find Full Text PDF

Photothermal therapy, in which a laser is an effective tool, is a promising method for cancer treatment. Laser parameters, including power, irradiation time, type of laser radiation (continuous or chopped), and the concentration of the photothermal agent, can affect the efficiency of this method. Therefore, this study investigated and compared the effects of different laser parameters on the efficiency of photothermal treatment for cervical cancer, which is the fourth most prevalent cancer in women.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!