Fine classification and phenological information of rice paddy are of great significance for precision agricultural management. General compact polarimetric (CP) synthetic aperture radar (SAR) offers the advantage of providing rich polarimetric information, making it an important means of monitoring rice growth. Therefore, in response to the current challenges of difficulty in rice type classification and the small differences in phenological polarimetric characteristics, a novel strategy for fine classification and phenological analysis of rice paddy is proposed. This strategy thoroughly explores the polarimetric information of general CP SAR data and the target scattering characterization capabilities under different imaging modes. Firstly, the general CP SAR data is formalized using the standard CP descriptors, followed by the extraction of general CP features through the Δ / target decomposition method. optimal CP features are generated to achieve fine classification of rice paddy. Finally, 6 phenological stages of rice are analyzed based on the general CP features. The experiment results of rice classification show that the classification accuracy based on this strategy exceeds 90%, with a Kappa coefficient above 0.88. The highest classification accuracies were observed for transplanting hybrid rice paddy (T-H) and direct-sown japonica rice paddy (D-J), at 80.9% and 89.9%, respectively. The phenological evolution rule of the two rice types indicate that from early June (seedling stage) to late July (elongation stage), the CP feature variation trends of T-H and D-J are generally consistent. However, from October (mature stage) to November (harvest stage), the variation trends of the CP features for T-H and D-J are significantly different. The study found that from the booting-heading stage to the harvest stage, the linear π/4 mode outperforms circular and elliptical polarimetric modes in distinguishing different types of rice. Throughout the entire phenological period of rice growth, CP SAR of linear π/4 mode is surpasses that of other linear modes in discriminating different type of rice. The proposed strategy enables high-precision fine classification rice paddy, and the extracted general CP parameter effectively reflects the phenological change trends in rice growth.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499149 | PMC |
http://dx.doi.org/10.3389/fpls.2024.1391735 | DOI Listing |
Sci Total Environ
January 2025
Graduate School of Agricultural Science, Tohoku University, Sendai, Japan.
An agrivoltaic system (AVS), wherein crops and electricity are simultaneously produced on the same agricultural land, contributes to renewable energy production and food security. AVS is expected to expand energy production in rural areas; however, its energy balance has not been comprehensively investigated. In this study, the energy balance of an AVS established in 2021 in the paddy fields on Shonai Plain was determined.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, PR China.
Application of biogas slurry (BS) can promote ammonia (NH) volatilization. Algae sludge and Quercus acutissima leaves are rich in resources and nutrients, and can be effectively converted into valuable products. Hydrothermal carbonization technology (HTC) is a sustainable method for the treatment of wet biomass.
View Article and Find Full Text PDFSci Total Environ
January 2025
Program of Sustainability in Biosystems, Institute of Agrifood Research and Technology (IRTA), Caldes de Montbui, Barcelona, Spain. Electronic address:
Paddy fields are a major anthropogenic source of global methane (CH) emissions, a powerful greenhouse gas (GHG). This study aimed at gaining insights of different organic and inorganic conductive materials (CMs) - biochar, fungal melanin, and magnetite - to mitigate CH emissions, and on their influence on key microbial populations, mimicking the postharvest season throughout the degradation of rice straw in microcosms under anaerobic conditions encompassing postharvest paddy rice soils from the Ebro Delta, Spain. Results showed that fungal melanin was the most effective CM, significantly reducing CH emissions by 29 %, while biochar amendment also reduced emissions by 10 %.
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China.
Ideal root system architecture (RSA) is important for efficient nutrient uptake and high yield in crops. We cloned and characterized a key RSA regulatory gene, GRAVITROPISM LOSS 1 (OsGLS1), in rice (Oryza sativa L.).
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
December 2024
Centre for Research on Environmental Ecology and Fish Nutrition, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China; Key Laboratory of Integrated Rice-fish Farming, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, PR China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!