A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Numerical simulation of landscape ecological river flow structure based on vegetation patch distribution and fragmentation. | LitMetric

The self-organizing biological characteristics of vegetation and human activities lead to the disruption of the continuous spatial attributes of natural watersheds, which are significant factors affecting river wetland ecosystems. To clarify the landscape ecological flow characteristics of vegetation patch distribution and fragmentation, this study used the three-dimensional Reynolds stress turbulence model in ANSYS Fluent software. The model considered three vegetation patch coverages under two different submersion states and four fragmentation types of vegetation patches under the same coverage conditions within specific vegetation areas. The flow characteristics of longitudinally discontinuous rigid vegetation patches, occupying half of the width of the river channel, were numerically simulated. The model's applicability was verified by indoor open-channel flume experiments. The results indicated that: (1) The streamwise velocity in vegetated areas is significantly lower than in non-vegetated areas, and the difference in flow capacity between vegetated and non-vegetated areas increases with patch coverage and fragmentation degree. (2) In the non-submerged state, the maximum Reynolds stress in the vegetated area is located at the bottom of the vegetation and is negatively correlated with patch coverage but positively correlated with fragmentation degree. In the submerged state, the maximum Reynolds stress is located near the top of the canopy and is positively correlated with both patch coverage and fragmentation degree. (3) The longitudinal turbulent kinetic energy in the vegetated area is significantly higher than in the non-vegetated area. In the non-submerged state, the turbulent kinetic energy in the vegetated area is negatively correlated with patch coverage but positively correlated with fragmentation degree. In the submerged state, the turbulent kinetic energy of the longitudinal distribution in the free layer of the vegetated area is positively correlated with patch coverage, negatively correlated with fragmentation degree, and is only reflected in the upstream vegetation area.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499190PMC
http://dx.doi.org/10.3389/fpls.2024.1424566DOI Listing

Publication Analysis

Top Keywords

patch coverage
20
fragmentation degree
20
vegetated area
16
correlated patch
16
positively correlated
16
vegetation patch
12
reynolds stress
12
negatively correlated
12
correlated fragmentation
12
turbulent kinetic
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!