Dynamic organic crystals as exceptionally efficient artificial natural light-harvesting actuators.

Chem Sci

National Engineering Research Center of Industrial Crystallization Technology, School of Chemical Engineering and Technology, Tianjin University Tianjin 300072 China.

Published: October 2024

Dynamic organic crystal materials that can directly convert solar energy into mechanical work hold the potential to be efficient artificial actuators. However, developing dynamic organic crystals that can efficiently transform natural light energy into mechanical energy is still quite challenging. Herein, a novel dynamic organic crystal whose two polymorphs (Form I and Form II) are both capable of effectively converting natural light into work was successfully synthesized. Under the irradiation of ultraviolet (UV), blue and natural light, the on/off toggling of a photosalient effect could be triggered. Specifically, under UV light irradiation, Form I demonstrates output work densities of about 4.2-8.4 × 10 J m and 1.6-4.9 × 10 J m before and after disintegration, respectively. Form II exhibits output work densities of about 1.3 × 10 to 1.9 × 10 J m by means of photoinduced bending, suggesting that controllable bending may be more favorable for energy harvesting than the photosalient effect. Utilizing the exceptionally high energy transduction efficiency of Form I, we developed a natural light-driven micro-actuator that can realize output work densities of 2.8-5.0 × 10 J m. The natural light-harvesting performance of this actuator significantly surpasses those of previously reported photomechanical crystals and could even be comparable to thermal actuators.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495514PMC
http://dx.doi.org/10.1039/d4sc05684aDOI Listing

Publication Analysis

Top Keywords

dynamic organic
16
natural light
12
output work
12
work densities
12
organic crystals
8
efficient artificial
8
natural light-harvesting
8
organic crystal
8
energy mechanical
8
natural
6

Similar Publications

ConspectusLithium-ion batteries (LIBs) based on graphite anodes are a widely used state-of-the-art battery technology, but their energy density is approaching theoretical limits, prompting interest in lithium-metal batteries (LMBs) that can achieve higher energy density. In addition, the limited availability of lithium reserves raises supply concerns; therefore, research on postlithium metal batteries is underway. A major issue with these metal anodes, including lithium, is dendritic formation and insufficient reversibility, which leads to safety risks due to short circuits and the use of flammable electrolytes.

View Article and Find Full Text PDF

Proteomic analysis of Trichoderma harzianum secretome and their role in the biosynthesis of zinc/iron oxide nanoparticles.

Sci Rep

January 2025

Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina.

The fungal green synthesis of nanoparticles (NPs) has gained great interest since it is a cost-effective and easy handling method. The process is simple because fungi secrete metabolites and proteins capable of reducing metal salts in aqueous solution, however the mechanism remains largely unknown. The aim of this study was to analyze the secretome of a Trichoderma harzianum strain during the mycobiosynthesis process of zinc and iron nanoparticles.

View Article and Find Full Text PDF

Roaming reactions involving a neutral fragment of a molecule that transiently wanders around another fragment before forming a new bond are intriguing and peculiar pathways for molecular rearrangement. Such reactions can occur for example upon double ionization of small organic molecules, and have recently sparked much scientific interest. We have studied the dynamics of the [Formula: see text]-roaming reaction leading to the formation of [Formula: see text] after two-photon double ionization of ethanol and 2-aminoethanol, using an XUV-UV pump-probe scheme.

View Article and Find Full Text PDF

Surface-enhanced Raman scattering (SERS) is a highly sensitive technology to detect target analytes. The construction of dynamic "hot-spots" represents a significant approach to enhancing detection sensitivity. Herein, a hybrid plasma platform with dynamic "hot-spots" was developed for SERS recognition based on the assembly of gold nanospheres (AuNSs) on temperature-sensitive bacterial cellulose (BC) film grafted with poly(N-isopropylacrylamide) (PNIPAM).

View Article and Find Full Text PDF

AF4/ICP-ToF-MS for the investigation of species-specific adsorption of organometallic contaminants on natural colloidal particles.

J Hazard Mater

January 2025

Federal Institute for Materials Research and Testing (BAM), Division 1.1 - Inorganic Trace Analysis, Richard-Willstätter-Straße 11, Berlin 12489, Germany. Electronic address:

Organotin (OT) compounds, while crucial in many industrial applications, pose substantial risks to the environment and human health. The toxicity and environmental behaviour of OTs depend on their chemical form, i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!