The lack of blue-emissive materials with high efficiency and excellent color purity commonly represents a pivotal obstacle in the development of organic light-emitting diodes (OLEDs). In this work, two blue to near-ultraviolet (NUV) donor-π-acceptor (D-π-A) emitters based on a fluorene π-bridge, 9-PCZCFTZ and 3-PCZCFTZ, are thus designed and synthesized, and non-doped devices derived from these two materials exhibit electroluminescence (EL) emission peaks at 404 nm and 417 nm, respectively. Interestingly, due to the specific stacking, a phenomenon appears in both materials in which the mobility of the electron is much higher than that of the hole, prompting us to use host doping to increase the hole mobilities, which ultimately leads to excellent OLED performances. As a result, the maximum external quantum efficiency (EQE) values of 9-PCZCFTZ and 3-PCZCFTZ in the doped devices reach as high as 14.5% and 10.8% respectively. Notably, both OLEDs show high blue purity very close to the BT.2020 standard.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11495493 | PMC |
http://dx.doi.org/10.1039/d4sc05625f | DOI Listing |
RSC Adv
January 2025
Faculty of Materials Science and Engineering, Phenikaa University Yen Nghia, Ha-Dong District Hanoi 10000 Vietnam
Near-ultraviolet (NUV)-pumped white light-emitting-diodes (WLEDs) often suffer from poor color rendering in the 480-520 nm range, highlighting the need for an efficient cyan phosphor with strong absorption at 370-420 nm. This study presents the successful synthesis of cyan-emitting ZnS/ZnO phosphors using a high-energy planetary ball milling method followed by post-annealing. The fabricated phosphors, with particle sizes ranging from 1 to 3 μm, exhibit strong cyan emission with CIE chromaticity coordinates of (0.
View Article and Find Full Text PDFDalton Trans
January 2025
Northwest Institute for Nonferrous Metal Research, Xi'an 710016, China.
Exploring new photoexcited phosphors has attracted attention for improving the performance of white LEDs. Here, an NaBaAlBOCl:Eu phosphor with high color purity (94.11%) has been synthesized.
View Article and Find Full Text PDFLangenbecks Arch Surg
January 2025
Department of General Surgery, Sanatorio Otamendi & Miroli (Otamendi & Miroli Hospital), University of Buenos Aires, Buenos Aires, Argentina.
Thyroid cancer is a common malignancy that requires comprehensive clinical evaluation prior to adequate surgical management. Over the last three decades thyroid surgery has tripled and is considered one of the most commonly performed procedures in general surgery. These procedures are associated with potential postoperative complications with significant deterioration in the patient's quality of life.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
School of Materials Science and Engineering, Jiangsu Engineering Research Center of Light-Electricity-Heat Energy-Converting Materials and Applications, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Key Laboratories of Environment-Friendly Polymers, National Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou, 213164, P. R. China.
Achieving high efficiency narrowband near-ultraviolet (NUV) emitters in organic light emitting diode (OLED) is still a formidable challenge. Herein, a proof-of-concept hybridized local and charge transfer (HLCT) molecule, named ICz-BO, is prepared and characterized, in which both multiresonant (MR) skeletons are integrated via conjugation connection. A slightly distorted structure and weak intramolecular charge transfer (CT) interaction between two MR subunits lead to a high-lying reverse intersystem crossing (h-RISC) channel of T→S, also evidenced by both experimental and calculated results.
View Article and Find Full Text PDFMechanoluminescence (ML) materials have attracted much attention because of their mechano-optical conversion characteristics, which have shown broad application prospects in stress sensing and anti-counterfeiting technology in the past few decades. However, elastico-ML has not been demonstrated at the near-ultraviolet (NUV) range. In this study, a novel NUV elastico-ML material (Ca, Sr)MgAlSiO:Ce (CSMASOC) with a melilite-type structure is successfully developed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!