Against the backdrop of the Ministry of Education's promotion of new agricultural science construction and interdisciplinary integration, a comprehensive chemistry experiment to enhance the practical skills of students in preparing biomass functional materials and detecting pesticide residues was designed. Natural loofah was utilized as a precursor in synthesizing nitrogen-doped magnetic porous carbon materials, which were then applied in a magnetic solid-phase extraction (MSPE) technique. Subsequently, high performance liquid chromatography (HPLC) was employed to analyze and detect the phenylurea herbicide monuron in tea. The experimental process included material synthesis, characterization, optimization of the MSPE conditions, adsorption performance studies, and HPLC, reflecting its scientific, systematic nature and providing a comprehensive learning platform for students. It not only deepens student understanding of the relationship between material characterization and application, but also improves their experimental design and problem-solving capacities. Moreover, by integrating cutting-edge science, ideological and political education, and experimental training, it not only stimulates student interest in scientific research and cultivates innovative thinking and practical skills, but also strengthens their feelings of social responsibility and historical mission. This approach realizes the comprehensive educational goals of experimental training and lays the foundation for nurturing high-quality talent with a global perspective and sense of social responsibility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11519765 | PMC |
http://dx.doi.org/10.3724/SP.J.1123.2024.04035 | DOI Listing |
Pestic Biochem Physiol
December 2024
College of Pharmacy, Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Ningxia Medical University, Yinchuan 750004, PR China. Electronic address:
Imidacloprid (IMI) and diuron (DIU) are widely used pesticides in agricultural production. However, their excessive use and high residues have caused harm to the ecological environment and human health. Microbial remediation as an efficient and low-toxic method has become a research hotspot for controlling environmental pollutants.
View Article and Find Full Text PDFWater Res
November 2024
Department of Environmental Science and Engineering, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:
Sulfate radical (SO) advanced oxidation processes (SR-AOPs) are efficient for degrading a broad spectrum of contaminants. This study demonstrates that the existence of environmentally relevant concentrations of nitrite (NO) can lead to the formation of N-nitrosodimethylamine (NDMA), a probable human carcinogen, when heat activated peroxydisulfate (heat/PDS) is applied to address contaminants with dimethylamine moieties, such as tetracyclines. NO effectively competes with tetracyclines for SO at a high second-order reaction rate constant of 8.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China. Electronic address:
Herbicide safeners are considered key agents for plant protection that reduce the harmful impacts of herbicides on crops and the environment in general, but traditional evaluation methods for their effectiveness are time-consuming and labor-intensive. In this study, a rapid and non-destructive method was proposed using chlorophyll fluorescence and hyperspectral imaging that combined with machine learning models. Besides, chemometric analysis was utilized to reveal the action mechanism between the wheat crop (Triticum aestivum L.
View Article and Find Full Text PDFSe Pu
November 2024
College of Chemistry, Liaoning University, Shenyang 110036, China.
Against the backdrop of the Ministry of Education's promotion of new agricultural science construction and interdisciplinary integration, a comprehensive chemistry experiment to enhance the practical skills of students in preparing biomass functional materials and detecting pesticide residues was designed. Natural loofah was utilized as a precursor in synthesizing nitrogen-doped magnetic porous carbon materials, which were then applied in a magnetic solid-phase extraction (MSPE) technique. Subsequently, high performance liquid chromatography (HPLC) was employed to analyze and detect the phenylurea herbicide monuron in tea.
View Article and Find Full Text PDFEcotoxicol Environ Saf
October 2024
Soil Science and Environment Group, CHANGINS, HES-SO University of Applied Sciences and Arts Western Switzerland, Route de Duillier 50, Nyon 1260, Switzerland.
The effect of pesticide residues on non-target microorganisms in multi-contaminated soils remains poorly understood. In this study, we examined the dissipation of commonly used pesticides in a multi-contaminated vineyard soil and its effect on bacterial, fungal, and protistan communities. We conducted laboratory soil microcosm experiments under varying temperature (20°C and 30°C) and water content (20 % and 40 %) conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!