Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Dying tumor cells regulated by immunogenic cell death (ICD) inducers are promising candidates for cancer vaccine development because of their comprehensive antigen spectrum. However, their limited immunogenicity and potential tumorigenicity hinder clinical translation. To address these challenges, a nano-orchestrator is developed that targets the endoplasmic reticulum (ER) stress, a critical pre-ICD event, to optimize the "precise dose" of ER stress. Using a clinical-range irradiation fluence (50‒200 J cm) with an 808 nm laser, the release of damage associated molecular patterns (DAMPs) and antigens are precisely regulated. A fluence of 150 J cm (2 W cm for 75 s) increases dendritic cell maturation and antitumor T cell proliferation, providing valuable clinical insights. The ER stress nano-orchestrator enhances both adjuvanticity and antigenicity via the protein kinase R-like endoplasmic reticulum kinase (PERK)-C/EBP homologous protein (CHOP) pathway to regulate ICD-induced DAMPs and promote tumor cell apoptosis. These optimized ER stress phototherapeutic dying tumor cells can serve as prophylactic vaccines, achieving a remarkable 100% success rate against tumor rechallenge in vivo. Additionally, the nano-orchestrator shows the potential to develop in situ therapeutic tumor vaccines when combined with anti-PD-L1 treatment, providing important insights into enhancing the efficacy of immune checkpoint regulators by modulating endogenous immune responses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adhm.202401851 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!