Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11614852 | PMC |
http://dx.doi.org/10.1038/s41422-024-01042-y | DOI Listing |
Photosynth Res
January 2025
Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
The Orange Carotenoid Protein (OCP) is a unique water-soluble photoactive protein that plays a critical role in regulating the balance between light harvesting and photoprotective responses in cyanobacteria. The challenge in understanding OCP´s photoactivation mechanism stems from the heterogeneity of the initial configurations of its embedded ketocarotenoid, which in the dark-adapted state can form up to two hydrogen bonds to critical amino acids in the protein's C-terminal domain, and the extremely low quantum yield of primary photoproduct formation. While a series of experiments involving point mutations within these contacts helped us to identify these challenges, they did not resolve them.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Chemistry, Faculty of Science, Cairo University, Giza, 12613, Egypt.
Piperazine-based compounds have garnered significant attention due to their notable biological and pharmacological activities, making them essential in fine chemical and pharmaceutical applications. In this study, we managed to synthesize a novel hybrid bis-cyanoacrylamide bearing the piperazine core via phenoxymethyl linker and incorporating sulphamethoxazole moiety. The novel compound was fully characterized using different spectral data including 1H-NMR, C-NMR, and FTIR spectroscopy.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
Bacterial infections can lead to severe medical complications, including major medical incidents and even death, posing a significant challenge in clinical trauma repair. Consequently, the development of new, efficient, and non-resistant antimicrobial agents has become a priority for medical practitioners. In this study, a stepwise hydrothermal reaction strategy is utilized to prepare FeO@MoS core-shell nanoparticles (NPs) with photosynthesis-like activity for the treatment of bacterial infections.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry & Chemical Engineering, Shaanxi Normal University, 620 West Chang'an Avenue, Chang'an District, Xi'an, Shaanxi 710119, P.R. China.
We present a robust 'splice-at-will' CRISPR RNA (crRNA) engineering mechanism that overcomes the limitations of clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system in directly detecting ultrashort RNAs. In this strategy, an intact Cas12a crRNA can be split from almost any site of the spacer region to obtain a truncated crRNA (tcrRNA) that cannot activate Cas12a even after binding an auxiliary DNA activator. While splicing tcrRNAs with a moiety of ultrashort RNA, the formed combination can work together to activate Cas12a efficiently, enabling 'splice-at-will' crRNA engineering.
View Article and Find Full Text PDFAnn Med Med Res
August 2024
Department of Pediatrics, Children's Foundation Research Institute at Le Bonheur Children's Hospital, University of Tennessee Health Science Center, USA.
GDP Dissociation Inhibitor 2 (GDI2) plays a crucial role in maintaining cellular homeostasis by regulating Rab GTPases involved in vesicular transport. This review highlights the importance of GDI2 in various biological processes, particularly embryonic development, apoptosis regulation, cancer, and immune responses. GDI2's essential function in embryonic development is evidenced by the embryonic lethality observed in GDI2 knockout mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!