G protein subunit Gamma 5 (GNG5) has been found to be involved in regulating glioma progression. However, its function and mechanism in glioblastoma (GBM) progression need to be further elucidated. GBM cell proliferation, apoptosis, invasion and stemness were assessed by cell counting kit 8 assay, EdU assay, flow cytometry, transwell assay and sphere formation assay. The mRNA and protein levels of GNG5 and Yin Yang 1 (YY1) were determined by quantitative real-time PCR and western blot (WB). Detection of the glucose consumption, lactate production and ATP/ADP ratios were used to assess cell glycolysis. Besides, Wnt/β-catenin pathway-related protein levels were examined by WB. Mice xenograft model was also constructed to explore GNG5 roles in vivo. GNG5 was highly expressed in GBM, and its silencing inhibited GBM cell proliferation, invasion, stemness and glycolysis, while promoted apoptosis. Transcription factor YY1 could bind to the GNG5 promoter region and induce its expression. GNG5 overexpression reversed the inhibitory effects of YY1 silencing on GBM cell growth, invasion, stemness and glycolysis. YY1/GNG5 axis could activate the Wnt/β-catenin pathway, and Wnt/β-catenin pathway agonists SKL2001 could revert the effects of GNG5 silencing on GBM cell progression. Furthermore, GNG5 facilitated GBM tumor growth by mediating the Wnt/β-catenin pathway. YY1-mediated GNG5 promoted GBM progression through the Wnt/β-catenin pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502875 | PMC |
http://dx.doi.org/10.1038/s41598-024-76019-3 | DOI Listing |
Iran J Med Sci
December 2024
Department of Biology, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia.
Background: In approximately 80% of colorectal cancer cases, mutations in the adenomatous polyposis coli () gene disrupt the Wingless-related integration site (Wnt)/β-catenin signaling pathway, a crucial factor in carcinogenesis. This disruption may result in consequences such as aberrant spindle segregation and mitotic catastrophe. This study aimed to analyze the effectiveness of the ethanolic extract of red okra () pods (EEROP) in inducing apoptosis in colorectal cancer cells (SW480) by inhibiting the Wnt/β-catenin signaling pathway.
View Article and Find Full Text PDFFront Mol Biosci
January 2025
The First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, China.
Introduction: Bone aging is linked to changes in the lineage differentiation of bone marrow stem cells (BMSCs), which show a heightened tendency to differentiate into adipocytes instead of osteoblasts. The therapeutic potential of irisin in addressing age-related diseases has garnered significant attention. More significantly, irisin has the capacity to enhance bone mass recovery and sustain overall bone health.
View Article and Find Full Text PDFWorld J Gastroenterol
January 2025
Department of Gastroenterology, University Hospital of Larisa, Larisa 41100, Greece.
Liver cancer, and in particular hepatocellular carcinoma (HCC) is a disease of rising prevalence and incidence. To date, definitive treatment options include either surgical excision or ablation of the affected area. With increasing research on several pathways that could be involved in the progression of HCC, new elements within these pathways emerge as potential targets for novel therapies.
View Article and Find Full Text PDFWorld J Gastroenterol
January 2025
Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
Hepatocellular carcinoma is one of the leading causes of cancer-related deaths globally, and effective treatments are urgently needed. The present study aimed to investigate the inhibitory effect of Calculus Bovis (CB) on liver cancer and the underlying mechanisms. CB inhibited M2 tumor-associated macrophage polarization and modulated the Wnt/β-catenin signaling pathway, thereby suppressing the proliferation of liver cancer cells.
View Article and Find Full Text PDFFront Mol Neurosci
January 2025
Department of Neurosurgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, China.
Hydrocephalus is a neurological condition caused by aberrant circulation and/or obstructed cerebrospinal fluid (CSF) flow after cerebral ventricle abnormal dilatation. In the past 50 years, the diagnosis and treatment of hydrocephalus have remained understudied and underreported, and little progress has been made with respect to prevention or treatment. Further research on the pathogenesis of hydrocephalus is essential for developing new diagnostic, preventive, and therapeutic strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!