Parkinson's Disease (PD) is a prevalent, progressive neurodegenerative disease with motor and non-motor symptoms. Vagus Nerve Stimulation (VNS) has emerged as a potential therapeutic approach for PD, but published research on this topic varies widely. This scoping review maps existing literature on VNS for PD, highlighting stimulation methods, operational parameters, safety profiles, neurophysiological mechanisms, and clinical outcomes in human and animal models. Online databases were used to identify 788 papers published between 2013 and 2023, from which 17 publications on invasive and non-invasive VNS in PD were selected. Studies showed high variability in VNS parameters and study design. Evidence in animal models and human subjects suggests potential neurophysiological effects on PD-related pathology and motor function improvements. However, significant gaps in the literature remain. Future research should include rigorous reporting of study design, standardization of stimulation parameters, and larger sample sizes to ultimately facilitate translation of VNS into clinical practice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11502766PMC
http://dx.doi.org/10.1038/s41531-024-00803-1DOI Listing

Publication Analysis

Top Keywords

vagus nerve
8
nerve stimulation
8
parkinson's disease
8
scoping review
8
human subjects
8
animal models
8
study design
8
vns
5
stimulation
4
stimulation parkinson's
4

Similar Publications

Lennox-Gastaut syndrome (LGS) is a severe developmental and epileptic encephalopathy characterized by multiple drug-resistant seizure types, cognitive impairment, and distinctive electroencephalographic patterns. Neuromodulation techniques, including vagus nerve stimulation (VNS), deep brain stimulation (DBS), and responsive neurostimulation (RNS), have emerged as important treatment options for patients with LGS who do not respond adequately to antiseizure medications. This review, developed with input from the Pediatric Epilepsy Research Consortium (PERC) LGS Special Interest Group, provides practical guidance for clinicians on the use of these neuromodulation approaches in patients with LGS.

View Article and Find Full Text PDF

Background: A high number of stroke patients cannot recover fully from motor impairment despite early rehabilitation. Auricular therapies, usually given by acupuncture doctors or nurses, have been widely used among these post-stroke patients. Potential benefits of auricular therapies were shown in recent clinical trials.

View Article and Find Full Text PDF

Neuromodulation for Headache Management in Pregnancy.

Curr Pain Headache Rep

January 2025

Department of Neurology - Headache Division, University of Miami Health, University of Miami School of Medicine, 1120 NW 14th Street, 13th Floor, Miami, FL, 33136, USA.

Purpose Of Review: Management of primary headache disorders during pregnancy is limited due to known teratogenicity or unknown safety of many currently available pharmaceutical therapies. Here, we explore the safety and efficacy of non-invasive neuromodulatory devices as another treatment modality for pregnant patients.

Recent Findings: There are six FDA-cleared, non-invasive neuromodulatory devices currently available for the management of headache that include remote electrical neuromodulation (REN), noninvasive vagal nerve stimulation (nVNS), external trigeminal nerve stimulation (eTNS), single-pulse transcranial magnetic stimulation (sTMS), and external concurrent occipital and trigeminal neurostimulation (eCOT-NS).

View Article and Find Full Text PDF

Transcutaneous auricular vagus nerve stimulation (taVNS) has been tested as a strategy to facilitate fear extinction learning based on the hypothesis that taVNS increases central noradrenergic activity. Four studies out of six found taVNS to enhance extinction learning especially at the beginning of extinction. Facilitatory effects of taVNS were mainly observed in US expectancy, less in fear-potentiated startle (FPS), and not in the skin conductance response (SCR).

View Article and Find Full Text PDF

Allergic rhinitis may attenuate the sympathovagal imbalances in patients with severe obstructive sleep apnea: pilot study using a heart rate variability analysis.

Sleep Breath

January 2025

Departments of Otolaryngology, Kangwon National University College of Medicine, Kangwon National University Hospital, 156, Baengnyeong-ro, Chuncheon-Si, Gangwon-Do, Chuncheon, 24289, Republic of Korea.

Purpose: The effect of allergic rhinitis (AR) on autonomic nervous system in patients with obstructive sleep apnea (OSA) remains unclear. We utilized heart rate variability (HRV) analysis to assess cardiac autonomic activity in patients with OSA, comparing those with and without allergic rhinitis (AR).

Methods: We enrolled 182 patients who visited our sleep clinic complaining of habitual snoring or apnea during sleep.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!