A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biomarker and adverse outcome pathway responses of Tubifex tubifex (sludge worm) exposed to environmentally-relevant levels of acenaphthene: insights from behavioral, physiological, and chemical structure-activity analyses. | LitMetric

AI Article Synopsis

  • Impact on Aquatic Ecosystems
  • : Acenaphthene, a polycyclic aromatic hydrocarbon (PAH), poses a harm to aquatic life, particularly affecting organisms like benthic invertebrates including Tubifex tubifex, through sublethal acute toxicity and chronic exposure effects.
  • Behavioral and Histopathological Changes
  • : Exposure to high concentrations of acenaphthene led to noticeable behavioral changes in Tubifex, such as clumping and secretion of mucus, alongside significant histopathological effects like inflammation and abnormal tissue growth after prolonged exposure.
  • Oxidative Stress and Sensitivity Analysis
  • : The study observed increased levels of antioxidant enzymes and markers of oxidative stress in response to

Article Abstract

Polycyclic aromatic hydrocarbons (PAHs), including acenaphthene, pose a significant threat to aquatic ecosystems by harming vital organisms such as benthic invertebrates. This study evaluated the impact of environmentally relevant concentrations of acenaphthene on Tubifex tubifex, focusing on sublethal acute toxicity and subchronic biomarker responses. Key biomarkers assessed included histopathological changes and the modulation of antioxidant enzymes: catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), and malondialdehyde (MDA). Additionally, the study examined structure-activity relationships and species sensitivity distribution (SSD). Concentrations exceeding the solubility threshold of acenaphthene (3.9 mg/L) triggered distinct, concentration-dependent behavioral responses in Tubifex tubifex, such as clumping, mucus secretion, and body wrinkling. Prolonged exposure exacerbated these behavioral dysfunctions, while subchronic exposure resulted in significant histopathological alterations, including epithelial hyperplasia, inflammation, edema, fibrosis, and degenerative changes. The edematic appearance of the body wall suggested a potential immune response to exposure. Furthermore, increased activities of CAT, SOD, and GST indicated oxidative stress in the worms. The study found a 1.5-fold increase in CAT and GST activity, a fivefold increase in SOD, and a striking 100-fold increase in MDA levels compared to controls, signifying an overwhelmed antioxidant defense system and potential cellular disruption. The SSD curve revealed hazard concentrations (HC50 and HC90), indicating that Tubifex tubifex exhibited lower sensitivity to acenaphthene compared to other taxa. In silico analysis and read-across models confirmed the potential of acenaphthene to induce significant oxidative stress upon exposure. The correlation between biomarker responses and structure-activity relationship analysis highlighted the aromatic nature of acenaphthene as a key factor in generating reactive metabolites, inhibiting antioxidant enzymes, and promoting redox cycling, ultimately contributing to adverse outcomes. These findings, coupled with behavioral responses and SSD curve inferences, underscore the importance of the solubility threshold of acenaphthene as a critical benchmark for evaluating its ecological impact in aquatic environments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-024-35290-7DOI Listing

Publication Analysis

Top Keywords

tubifex tubifex
12
responses tubifex
8
acenaphthene
8
biomarker responses
8
antioxidant enzymes
8
solubility threshold
8
threshold acenaphthene
8
behavioral responses
8
oxidative stress
8
ssd curve
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!