Exploiting cellulose-derived levulinic acid (LA) in biorefinery has potential application prospects, and the development of efficient and stable catalysts is crucial yet challenging. In this study, a bimetallic synergy strategy was proposed to construct an efficient and durable solid acid catalyst with crystalline solid solution by a totally solid-phase method. Mechanical activation (MA)-treated precursor (metal salts, starch, and urea) was calcined to obtain a stable biomass-derived carbon (BC)-supported AlZr (MA-AZ/BC) composite, which was applied for catalytic conversion of cellulose to LA in aqueous-phase system. The results indicate that the synergistic effect of bimetallic crystalline solid solution and the existence of Brønsted-Lewis dual-acid sites in the MA-AZ/BC catalyst contributed to a cellulose conversion efficiency of 97.5 % and a LA yield of 67.1 %. Benefiting from the strong bimetal-support interaction, the MA-AZ/BC catalyst exhibited favorable stability and recoverability. On the basis of comprehensive analysis, a reaction mechanism of Brønsted-Lewis dual-acid sites for synergistic catalytic conversion of cellulose was proposed. This study provides a new idea for the rational design and environmentally friendly fabrication of functional BC-based catalysts for efficiently producing platform compounds derived from biomass.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2024.136061 | DOI Listing |
Adv Mater
January 2025
State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Physics and Optoelectronics, South China University of Technology, Guangzhou, 510641, China.
0D hybrid metal halide (HMH) luminescent glasses have garnered significant attentions for its chemical diversity in optoelectronic applications and it also retains the skeleton connectivity and coordination mode of the crystalline counterparts while exhibiting various physics/chemistry characteristics distinct from the crystalline states. However, understanding of the glass-forming ability and the specific structural origins underpinning the luminescent properties of 0D HMH glasses remains elusive. In this review, it is started from the solid-liquid phase transition and thermodynamic analysis of 0D HMHs formed through melt-quenching, and summarize the current compounds capable of stably forming glassy phases via chemical structural design.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Department of Chemical Sciences, SSPC, the Research Ireland Centre for Pharmaceuticals, Bernal Institute, University of Limerick, V94 T9PX, Ireland. Electronic address:
Hypothesis: It is hypothesised in this work that mesoscale clusters will be present in both undersaturated and supersaturated solutions of organic pharmaceutical molecules. These clusters, being loose aggregates, could be sensitive to shear forces experienced during filtration. Thus, comparing the behaviour of these clusters alongside nanoparticles during filtration-an important sample treatment parameter during crystallization-will elucidate qualitative differences from solid, crystalline nanoparticles of similar size.
View Article and Find Full Text PDFAdv Mater
December 2024
Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids and State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
Highly efficient nonfullerene acceptors (NFAs) for organic solar cells (OSCs) with low energy loss (E) and favorable morphology are critical for breaking the efficiency bottleneck and achieving commercial applications of OSCs. In this work, quinoxaline-based NFAs are designed and synthesized using a synergistic isomerization and bromination approach. The π-expanded quinoxaline-fused core exhibits different bromination sites for isomeric NFAs, namely AQx-21 and AQx-22.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
Nanoporous metals have unique potentials for energy applications with a high surface area despite the percolating structure. Yet, a highly corrosive environment is required for the synthesis of porous metals with conventional dealloying methods, limiting the large-scale fabrication of porous structures for reactive metals. In this study, we synthesize a highly reactive Mg nanoporous system through a facile organic solution-based approach without any harsh etching.
View Article and Find Full Text PDFACS Appl Electron Mater
December 2024
Institute of Semiconductor and Solid State Physics, Johannes Kepler University Linz, Altenberger Straße 69, 4040, Linz, Austria.
Germanium (Ge), the next-in-line group-IV material, bears great potential to add functionality and performance to next-generation nanoelectronics and solid-state quantum transport based on silicon (Si) technology. Here, we investigate the direct epitaxial growth of two-dimensional high-quality crystalline Ge layers on Si deposited at ultralow growth temperatures ( = 100-350 °C) and pristine growth pressures (≲10 mbar). First, we show that a decreasing does not degrade the crystal quality of homoepitaxial Ge/Ge(001) by comparing the point defect density using positron annihilation lifetime spectroscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!