Background: Triple-negative breast cancer (TNBC) is a molecular subtype of breast cancer with high aggressiveness and poor prognosis. Cancer-associated fibroblasts (CAFs) are major components of the TNBC microenvironment and play an important role in tumor progression and treatment responses. Our goal is to identify specific CAFs subpopulations contributing to TNBC development.

Methods: Multiomics analyses were applied to identify the CAFs-specific genes related to immunotherapy response. The clinical significance of a CAFs subset with A-kinase anchoring protein 12 (AKAP12) positive was explored in 80 patients with TNBC through double-labeling immunofluorescence assay. Cytometry by time-of-flight and RNA sequencing were performed to elucidate the immune landscape of TNBC microenvironment and functional mechanism of AKAP12 CAFs.

Results: Multiomics analyses identified an AKAP12 CAFs subset associated with the immunotherapy response of TNBC, and a high population of these cells is correlated with poor prognosis in patients with TNBC. Intratumoral AKAP12 CAFs promote formation of an immunosuppressive tumor microenvironment by spatially mediating macrophage M2 polarization via interleukin-34 (IL-34)/macrophage-colony stimulating factor receptor (CSF1R) signaling in TNBC. Single-cell RNA sequencing analyses revealed that AKAP12 fibroblasts interact with macrophages through the PI3K/AKT/IL-34 axis. In addition, pharmacological blockade of the IL-34/CSF1R signaling enhances the efficacy of anti-programmed cell death protein-1 antibody in TNBC rodent models.

Conclusions: AKAP12 is mainly expressed in fibroblasts in TNBC. AKAP12 CAFs population is negatively associated with the prognosis of patients with TNBC. AKAP12 CAFs shape the immunosuppressive TNBC microenvironment by releasing IL-34 to promote macrophage M2 polarization. Targeting IL-34 may boost the immunotherapeutic efficacy for TNBC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11499773PMC
http://dx.doi.org/10.1136/jitc-2024-009877DOI Listing

Publication Analysis

Top Keywords

patients tnbc
16
akap12 cafs
16
tnbc
14
immunotherapy response
12
macrophage polarization
12
tnbc microenvironment
12
akap12
9
akap12 positive
8
breast cancer
8
poor prognosis
8

Similar Publications

FOSL1 transcriptionally dictates the Warburg effect and enhances chemoresistance in triple-negative breast cancer.

J Transl Med

January 2025

Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun City, Jilin Province, P.R. China.

Background: Dysregulated energy metabolism has emerged as a defining hallmark of cancer, particularly evident in triple-negative breast cancer (TNBC). Distinct from other breast cancer subtypes, TNBC exhibits heightened glycolysis and aggressiveness. However, the transcriptional mechanisms of aerobic glycolysis in TNBC remains poorly understood.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a diverse category with a subset that displays particularly aggressive characteristics, referred to in this study as "rapid relapse" TNBC (rrTNBC). This term is defined as the occurrence of distant metastasis or death within 24 months post-diagnosis. The paper mainly studies the clinicopathologic traits of TNBC patients experiencing rapid disease progression and chemotherapy resistance and identify predictive markers for this outcome.

View Article and Find Full Text PDF

Objective: Triple negative breast carcinoma (TNBC) is characterized by the absence of estrogen receptor, progesterone receptor and human epidermal growth factor receptor-2 receptor expression. Carbonic anhydrase IX (CA IX) is a tumor-associated cell surface glycoprotein that is involved in adaptation to hypoxia-induced acidosis and plays a role in cancer progression. The aim of this study was to investigate CA IX expression in TNBC and its relationship with treatment effect.

View Article and Find Full Text PDF

Triple-negative breast cancer (TNBC) is a highly aggressive and clinically challenging subtype of breast cancer, lacking the expression of estrogen receptor (ER), progesterone receptor (PR), and HER2/neu. The absence of these receptors limits therapeutic options necessitating the exploration of novel treatment strategies. Epigenetic modifications, which include DNA methylation, histone modifications, and microRNA (miRNA) regulation, play a pivotal role in TNBC pathogenesis and represent promising therapeutic targets.

View Article and Find Full Text PDF

Introduction: Triple-negative breast cancer (TNBC) is a subgroup of breast cancer characterized by the absence of estrogen and the human epidermal 2 receptor and also a lack of targeted therapy options. Chemotherapy has so far been the only approved treatment option, and patients with metastatic cancer have a dismal prognosis with a median overall survival (OS) of approximately 14 months. Identification of druggable targets for metastatic TNBC is therefore of special interest.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!