AI Article Synopsis

  • Butyrolactone-I (BTL-1), derived from the marine fungus Aspergillus terreus, shows potential in alleviating intestinal inflammation and protecting against inflammatory bowel disease (IBD) through various cellular pathways.
  • BTL-1 was found to increase the presence of beneficial bacteria, specifically Lactobacillus johnsonii (LJ), which in turn helps bolster intestinal barrier integrity and reduce IBD symptoms in mice.
  • The study indicates that BTL-1’s protective effects are linked to the promotion of LJ and its metabolites, like butyric and propionic acids, alongside downregulation of harmful MAPK signaling pathways.

Article Abstract

Butyrolactone-I (BTL-1), a secondary metabolite from the marine fungus Aspergillus terreus, exhibits numerous biological activities. Previous research has indicated that Butyrolactone-I alleviates intestinal epithelial inflammation via the TLR4/NF-κB and MAPK pathways. However, the mechanisms underlying its protection against intestinal barrier damage remain unclear. This study aims to further elucidate these mechanisms. We observed that BTL-1 administration increased the abundance of Lactobacillus johnsonii (LJ) in both in vivo and in vitro experiments, prompting an investigation into the effects of LJ and its metabolites on DSS-induced inflammatory bowel disease (IBD). The results demonstrated that BTL-1 significantly upregulated tight junction (TJ) and adherens junction (AJ) proteins, maintained intestinal barrier integrity, and alleviated DSS-induced IBD in mice. These effects were associated with the proliferation of LJ and its metabolites, such as butyric and propionic acids, and the inhibition of the MAPK signaling pathway in the colon. Interestingly, administering LJ alone produced a protective effect against DSS-induced IBD similar to that observed with BTL-1. Furthermore, butyric acid, a metabolite of LJ, also upregulated TJ/AJ proteins in intestinal epithelial cells through the MAPK signaling pathway. Our findings suggest that BTL-1 regulates intestinal flora, promotes LJ proliferation, protects intestinal barrier integrity, increases the concentrations of butyric and propionic acids, and ultimately inhibits the activation of the MAPK signaling pathway in mice to alleviate IBD. Therefore, BTL-1 could potentially be used as a natural drug to prevent IBD and maintain intestinal flora balance. We explored how butyrolactone-I exerts a preventive effect on IBD through intestinal bacteria (Lactobacillus johnsonii).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jnutbio.2024.109786DOI Listing

Publication Analysis

Top Keywords

intestinal barrier
16
lactobacillus johnsonii
12
mapk signaling
12
signaling pathway
12
intestinal
9
alleviates intestinal
8
barrier damage
8
intestinal epithelial
8
observed btl-1
8
barrier integrity
8

Similar Publications

Alterations in Ileal Secretory Cells of The DSS-Induced Colitis Model Mice.

Acta Histochem Cytochem

December 2024

Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi, Kitakyushu, Fukuoka 807-8555, Japan.

Inflammatory bowel disease is triggered by abnormalities in epithelial barrier function and immunological responses, although its pathogenesis is poorly understood. The dextran sodium sulphate (DSS)-induced colitis model has been used to examine inflammation in the colon. Damage to mucosa primality occurs in the large intestine and scarcely in the small intestine.

View Article and Find Full Text PDF

Introduction: The ingestion of nanomaterials (NMs) may impair the intestinal barrier, but the underlying mechanisms remain evasive, and evidence has not been systematically gathered or produced. A mechanistic-based approach would be instrumental in assessing whether relevant NMs disrupt the intestinal barrier, thereby supporting the NM risk assessment in the food sector.

Methods: In this study, we developed an adverse outcome pathway (AOP) based on biological plausibility and by leveraging information from an existing NM-relevant AOP that leads to hepatic outcomes.

View Article and Find Full Text PDF

() is a Gram-negative, obligate anaerobic, commensal bacterium residing in the human gut and holds therapeutic potential for ulcerative colitis (UC). Previous studies have indicated that capsular polysaccharide A (PSA) of is a crucial component for its effectiveness, possessing various biological activities such as anti-inflammatory, anti-tumor, and immune-modulating effects. We previously isolated and characterized the strain ZY-312 from the feces of a healthy breastfed infant, and extracted its PSA, named TP2.

View Article and Find Full Text PDF

CHONDROITIN SULFATE AND GLUCOSAMINE SULFATE AS PROTECTIVE AND ANTI-INFLAMMATORY AGENTS IN THE ULCERATIVE COLITIS DSS MODEL IN RATS.

Arq Gastroenterol

December 2024

Instituto de Ciências Biológicas da Universidade Federal de Juiz de Fora, Laboratório de Análises de Glicoconjugados, Departamento de Bioquímica, Juiz de Fora, MG, Brasil.

Chondroitin sulfate (CS) and glucosamine (GlcN) are indicated for the treatment of some inflammatory diseases, such as osteoarthritis, mainly because of the anti-inflammatory effects in reducing metalloproteinases activities (MMP), and other inflammatory mediators. Herein, we reported the structure of the CS, the anti-inflammatory and protective effects of the CS, and GlcN administration in ulcerative colitis model induced by dextran sulfate sodium (DSS) in rats. Experimental data indicated that CS disaccharide composition is very similar to the C4S standard, with modal molecular weight at 30.

View Article and Find Full Text PDF

Nutritional zinc (Zn) deficiency could impair immune function and affect bowel conditions. However, the mechanism by which Zn deficiency affects the immune function of gut-associated lymphoid tissue (GALT) remains unclear. We investigated how Zn deficiency affects the function of GALT and level of secretory IgA (sIgA), a key component of the intestinal immune barrier, its underlying mechanisms, and whether Zn deficiency induces bacterial translocation to the liver.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!