Desertification and wastewater discharge are two global issues that severely threaten the sustainable use of available natural resources. This study aimed to explore the potential for transferring nutrients from municipal wastewater to drylands by inducing artificial biocrusts through the inoculation of wastewater-cultured Scytonema javanicum onto the sand surface in Gurbantunggut Desert. The results demonstrated that wastewater cultured S. javanicum effectively induced artificial biocrusts, achieving high photosynthetic biomass and nutrient accumulation (Chl-a, AP and OC) comparable to those induced by S. javanicum cultured in synthetic medium. In addition, the risk index (RI) value of 124.32 suggested a low ecological risk using wastewater cultured S. javanicum to induce artificial biocrusts. This study substantiates the feasibility of using municipal wastewater-cultured cyanobacteria to induce artificial biocrusts, thereby providing a dual benefit: enhancing soil stability in drylands and utilizing wastewater as a resource, thus presenting a significant stride towards the sustainable management of natural resources.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.177049 | DOI Listing |
Photosynthetica
June 2024
School of Environmental and Municipal Engineering. Lanzhou Jiaotong University, 730070 Lanzhou, China.
Desert biocrusts play an important role in the control of desertification and artificial inoculation can promote the formation and development of biocrusts. Physiological and growth responses of biocrusts inoculated on desert surfaces were investigated to assess the effect of mixture ratio, inoculation times, and water supply under laboratory conditions. The application of biological sand-fixing material prepared by cultivated algae crust and polymeric composites in a 1:1 ratio accelerated the most accumulation of chlorophyll in 0.
View Article and Find Full Text PDFSci Total Environ
December 2024
State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun 130117, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430072, China. Electronic address:
Mar Pollut Bull
March 2024
MARE - Marine and Environmental Sciences Centre, ARNET - Aquatic Research Network, Agência Regional para o Desenvolvimento da Investigação Tecnologia e Inovação (ARDITI), Funchal, Madeira, Portugal; Smithsonian Environmental Research Center, 647 Contees Wharf Road, Edgewater, MD 21037, USA.
Coastal sprawl is among the main drivers of global degradation of shallow marine ecosystems. Among artificial substrates, quarry rock can have faster recruitment of benthic organisms compared to traditional concrete, which is more versatile for construction. However, the factors driving these differences are poorly understood.
View Article and Find Full Text PDFSci Total Environ
October 2022
Shapotou Desert Research and Experimental Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Science, Lanzhou, Gansu 730000, China; Key Laboratory of Stress Physiology and Ecology in Cold and Arid Regions of Gansu Province, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China. Electronic address:
Degradation and expansion are current threats associated with drylands. During natural or artificial restoration, dryland ecosystems tend to contain a unique community, namely, biocrusts. Studies have shown that biocrusts serve multiple functions and have the potential to accelerate or inhibit degradation.
View Article and Find Full Text PDFFront Microbiol
March 2022
The UWA Institute of Agriculture and School of Agriculture & Environment, The University of Western Australia, Perth, WA, Australia.
Moss-dominated biocrusts (moss crusts) are a feasible approach for the ecological restoration of drylands, but difficulty obtaining inoculum severely limits the progress of large-scale field applications. Exogenous microorganisms could improve moss growth and be conducive to moss inoculum propagation. In this study, we investigated the growth-promoting effects and potential mechanisms of exogenous microorganism additives on moss crusts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!