A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The internal decay of wood is driven by the interplay between foraging Magellanic woodpeckers and environmental conditions. | LitMetric

Although woodpeckers are known to forage in decaying trees, their contribution to internal wood decay is not well known. In this sense, non-destructive techniques for structural wood degradation provide an opportunity to quantitatively assess the role of woodpeckers in tree decay. We used sonic tomography to test that the trunks of living trees pecked by Magellanic woodpeckers show pronounced decay, which accelerates under environmental conditions favorable to wood-decaying fungi. The internal decomposition of wood and its decay rate were measured over four years on 156 living southern beech (Nothofagus) trees belonging to four dominant species of southern temperate forests in northern Patagonia. Half of these live trees had woodpecker feeding holes, while the rest served as controls. The percentage of decayed wood, although not severely decayed, increased in sections with the presence of woodpecker holes, but was also influenced by temperatures and biophysical variables such as elevation and topography. The trunk sections with woodpecker holes and exposed to intensive foraging showed accelerated inter-annual decay. Woodpecker foraging activity interacted with vegetation characteristics, resulting in accelerated wood decay in forest sites with an open canopy and exposed to water stress. Thus, sonic tomography provided evidence of a close relationship between woodpeckers and internal wood decomposition, suggesting a positive feedback mechanism regulated by forest disturbance. The approach used here can be extended to gain insight into the influence of woodpeckers on tree decay and mortality in regions experiencing severe drought and forest degradation, such as northern Patagonia.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2024.177133DOI Listing

Publication Analysis

Top Keywords

wood decay
12
magellanic woodpeckers
8
environmental conditions
8
internal wood
8
woodpeckers tree
8
tree decay
8
sonic tomography
8
northern patagonia
8
woodpecker holes
8
wood
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!