Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Macaques are representative animal models in translational research. However, the distinct shape and location of the brain regions between macaques and humans prevents us from comparing the brain structure directly. Here, we calculated structural connectivity (SC) with multi-scale hierarchical regions of interest (ROIs) to parcel out human and macaque brain into 8 (level 1 ROIs), 28 (level 2 ROIs), or 46 (level 3 ROIs) regions, which consist of anatomically and functionally defined level 4 ROIs (around 100 parcellation of the brain). The SC with the level 1 ROIs showed lower individual and interspecies variation in macaques and humans. SC with level 2 and 3 ROIs shows that the several regions in frontal, temporal and parietal lobe show distinct connectivity between macaques and humans. Lateral frontal cortex, motor cortex and auditory cortex were shown to be important areas for interspecies differences. These results provide insights to use macaques as animal models for translational study.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuroimage.2024.120901 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!