RNA infrastructure profiling illuminates transcriptome structure in crowded spaces.

Cell Chem Biol

Department of Chemistry, Stanford University, Stanford, CA 94305, USA; Sarafan ChEM-H Institute, Stanford University, Stanford, CA 94305, USA. Electronic address:

Published: December 2024

RNAs fold into compact structures and undergo protein interactions in cells. These occluded environments can block reagents that probe the underlying RNAs. Probes that can analyze structure in crowded settings can shed light on RNA biology. Here, we employ 2'-OH-reactive probes that are small enough to access folded RNA structure underlying close molecular contacts within cells, providing considerably broader coverage for intracellular RNA structural analysis. The data are analyzed first with well-characterized human ribosomal RNAs and then applied transcriptome-wide to polyadenylated transcripts. The smallest probe acetylimidazole (AcIm) yields 80% greater structural coverage than larger conventional reagent NAIN3, providing enhanced structural information in hundreds of transcripts. The acetyl probe also provides superior signals for identifying mA modification sites in transcripts, particularly in sites that are inaccessible to a standard probe. Our strategy enables profiling RNA infrastructure, enhancing analysis of transcriptome structure, modification, and intracellular interactions, especially in spatially crowded settings.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chembiol.2024.09.009DOI Listing

Publication Analysis

Top Keywords

rna infrastructure
8
transcriptome structure
8
structure crowded
8
crowded settings
8
rna
5
infrastructure profiling
4
profiling illuminates
4
illuminates transcriptome
4
structure
4
crowded spaces
4

Similar Publications

Rifampicin-resistant tuberculosis (RR-TB) is a critical issue with significant implications for patient care, public health, and TB control efforts that necessitate comprehensive strategies for detection. This study presents a novel point-of-care diagnostic tool for RR-TB detection employing a peptide nucleic acid (PNA)-paper-based sensor combined with isothermal recombinase polymerase amplification (RPA). The sensor targets mutations in codons 516, 526, and 531 of the rpoB gene, the top three common mutations associated with rifampicin-resistant strains.

View Article and Find Full Text PDF

RNA plays a crucial role not only in information transfer as messenger RNA during gene expression but also in various biological functions as non-coding RNAs. Understanding mechanical mechanisms of function needs tertiary structure information; however, experimental determination of three-dimensional RNA structures is costly and time-consuming, leading to a substantial gap between RNA sequence and structural data. To address this challenge, we developed NuFold, a novel computational approach that leverages state-of-the-art deep learning architecture to accurately predict RNA tertiary structures.

View Article and Find Full Text PDF

Background: Tumour-infiltrating T cells can mediate both antitumour immunity and promote tumour progression by creating an immunosuppressive environment. This dual role is especially relevant in hepatocellular carcinoma (HCC), characterised by a unique microenvironment and limited success with current immunotherapy.

Objective: We evaluated T cell responses in patients with advanced HCC by analysing tumours, liver flushes and liver-draining lymph nodes, to understand whether reactive T cell populations could be identified despite the immunosuppressive environment.

View Article and Find Full Text PDF

Global Perspectives on Returning Genetic Research Results in Parkinson Disease.

Neurol Genet

December 2024

From the Division of Neurology (A.H.T., S.-Y.L.), Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; Programa de Pós-Graduação em Ciências Médicas da Universidade Federal do Rio Grande do Sul (P.S.-A.), Clínica Santa María, Santiago, Chile; Departamento de Farmacologia (A.F.S.S.), Universidade Federal do Rio Grande do Sul; Serviço de Neurologia (A.F.S.S.), Hospital de Clínicas de Porto Alegre, Brazil; Institute of Neurogenetics (H.M., M.L.D., C.K.), University of Lübeck, Germany; Department of Biomedical Science (A.A.-A.), Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia; The Michael J. Fox Foundation for Parkinson's Research (J.S., B.F.), New York; Department of Medical and Molecular Genetics (C.E.W.), Indiana University, Indianapolis; Department of Neuroscience and Brain Health (M.L.D.), Metropolitan Medical Center, Manila, Philippines; Centre for Preventive Neurology (S.D., M.T.P., A.J.N.), Wolfson Institute of Population Health, Queen Mary University of London, United Kingdom; Unidad de Trastornos del Movimiento (M.T.P.), Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Spain; Laboratory of Neurogenetics (M.B.M.), National Institute on Aging, National Institutes of Health, Bethesda, MD; Department of Clinical and Movement Neurosciences (M.B.M., H.R.M.), UCL Queen Square Institute of Neurology, University College London, United Kingdom; Department of Neurology (R.N.A.), Columbia University Irving Medical Center, New York; Movement Disorders Division (R.N.A.), Neurological Institute, Tel Aviv Sourasky Medical Center and Tel Aviv School of Medicine, Tel Aviv University, Israel; Molecular Medicine Laboratory and Neurology Department (K.R.K.), Concord Clinical School, Concord Repatriation General Hospital, The University of Sydney; Translational Neurogenomics Group (K.R.K.), Genomic and Inherited Disease Program, Garvan Institute of Medical Research; and St Vincent's Healthcare Campus (K.R.K.), Faculty of Medicine, UNSW Sydney, Darlinghurst, New South Wales, Australia.

Background And Objectives: In the era of precision medicine, genetic test results have become increasingly relevant in the care of patients with Parkinson disease (PD). While large research consortia are performing widespread research genetic testing to accelerate discoveries, debate continues about whether, and to what extent, the results should be returned to patients. Ethically, it is imperative to keep participants informed, especially when findings are potentially actionable.

View Article and Find Full Text PDF

Unlabelled: Testing for the causative agent of coronavirus disease 2019 (COVID-19), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has been crucial in tracking disease spread and informing public health decisions. Wastewater-based epidemiology has helped to alleviate some of the strain of testing through broader, population-level surveillance, and has been applied widely on college campuses. However, questions remain about the impact of various sampling methods, target types, environmental factors, and infrastructure variables on SARS-CoV-2 detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!