Low-molecular-weight organic acids (LMWOAs) play a crucial role as components of dissolved organic matter in soil, influencing the sorption/desorption, degradation, and plant uptake of diverse pollutants within the agricultural soil ecosystem. This study delves into the sorption behavior and mechanism of the fluoroquinolone antibiotic enrofloxacin (ENR) on agricultural soil in North China, focusing on the impact of LMWOAs. Through batch equilibrium experiments, we explored the sorption/desorption kinetics of ENR under varying conditions such as temperature, pH, ion strength, and ion type, with the addition of acetic acid, oxalic acid, and citric acid individually. Our findings reveal that the sorption and desorption kinetics of ENR-whether with or without LMWOAs-conformed well to the pseudo-second-order kinetic model (R ≥ 0.997). The presence of LMWOAs notably enhanced ENR sorption while impeding desorption in soil, with oxalic acid demonstrating the highest promotion effect followed by acetic acid and citric acid. Moreover, the sorption capacity and affinity of ENR decreased with rising solution pH, dropping from 96.8%-98.5% to 30.9%-34.4%. Acidic conditions favored ENR retention in soil, with inhibition of sorption escalating alongside increasing ionic strength. LMWOAs, soil solution pH, and coexisting ions emerge as pivotal factors shaping ENR sorption behavior. Furthermore, LMWOA presence intensified desorption hysteresis of ENR on soil, with a desorption hysteresis coefficient (HI) ≤ 0.124. These results suggest that LMWOAs restrict ENR mobility in the local soil environment, heightening the risk of its accumulation in soil and crops. This study offers valuable insights into the intricate interplay among LMWOAs, ENR sorption dynamics, and environmental outcomes, underscoring the importance of understanding such complexities in agricultural soil management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.123060 | DOI Listing |
Sci Rep
December 2024
Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
Climate change has caused many challenges to soil ecosystems, including soil salinity. Consequently, many strategies are advised to mitigate this issue. In this context, biochar is acknowledged as a useful addition that can alleviate the detrimental impacts of salt stress on plants.
View Article and Find Full Text PDFLand use change can significantly alter the proportion of soil aggregates, thereby influencing aggregate stability and distribution of soil organic carbon (SOC). However, there is minimal research on the variations in the distribution of soil aggregates, aggregate stability, and SOC in soil aggregates following land use change from farmland (FL) to forest and grassland in the Loess Plateau region of China. Select six land use patterns (farmland (FL), abandoned cropland (ACL), Medicago sativa (MS), natural grassland (NG), Picea asperata Mast.
View Article and Find Full Text PDFJ Econ Entomol
December 2024
Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau & Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China.
Insects provide important pollination services for cops. While land use intensification has resulted in steep declines of wild pollinator diversity across agricultural landscapes, releasing managed honeybees has been proposed as a countermeasure. However, it remains uncertain whether managed honeybees can close the pollination gap of sunflower (Helianthus annuus L.
View Article and Find Full Text PDFEcol Lett
January 2025
Systematic Botany and Functional Biodiversity, Institute of Biology, Leipzig University, Leipzig, Germany.
Trait-based approaches have been increasingly used to relate plants to soil microbial communities. Using the recently described root economics space as an approach to explain the structure of soil-borne fungal communities, our study in a grassland diversity experiment reveals distinct root trait strategies at the plant community level. In addition to significant effects of plant species richness, we show that the collaboration and conservation gradient are strong drivers of the composition of the different guilds of soil fungi.
View Article and Find Full Text PDFEcol Lett
January 2025
Climate Impacts Research Centre, Department of Ecology and Environmental Sciences, Umeå University, Umeå, Sweden.
Empirical studies worldwide show that warming has variable effects on plant litter decomposition, leaving the overall impact of climate change on decomposition uncertain. We conducted a meta-analysis of 109 experimental warming studies across seven continents, using natural and standardised plant material, to assess the overarching effect of warming on litter decomposition and identify potential moderating factors. We determined that at least 5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!