For lowering the daily intake of salt, the study evaluated the impact of various organic sodium salts (OSS), including sodium acetate (SA), sodium citrate (SC), and sodium lactate (SL), on the quality and volatile flavor profiles of large yellow croaker. The results showed that the 5 % SC and 5 % SL treatments significantly improved water holding capacity (WHC), texture, and color (p < 0.05). These groups also demonstrated compact microstructures and maintained strong sensory acceptability. However, as the curing concentration increased, protein unfolding and oxidation intensified, and the transition from bound and immobile water to free water was observed. This shift negatively affected WHC, texture, and cell structure. Additionally, gas chromatography-ion mobility spectrometry (GC-IMS) identified 27 volatile compounds, with OSS treatments notably enhancing flavor intensity. These findings offer valuable insights for developing low-sodium practices in the seafood industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.foodchem.2024.141704 | DOI Listing |
Nanomaterials (Basel)
March 2025
Department of Chemistry and Biochemistry, California State University Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840, USA.
The availability of water-soluble nanoparticles allows catalytic reactions to occur in highly desirable green environments. The catalytic activity and selectivity of water-soluble palladium nanoparticles capped with 6-(carboxylate)hexanethiolate (C6-PdNP) and 5-(trimethylammonio)pentanethiolate (C5-PdNP) were investigated for the reduction of 4-nitrophenol, the oxidation of α,β-conjugated aldehydes, and the C-C coupling of phenylboronic acid. The study showed that between the two PdNPs, C6-PdNP exhibits better catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride and the selective oxidation of conjugated aldehydes to conjugated carboxylic acids.
View Article and Find Full Text PDFRSC Adv
March 2025
Guangdong Provincial International Joint Research Center for Energy Storage Materials, School of Chemistry, South China Normal University Guangzhou 510006 China
Organic carbonyl cathode materials are expected to be excellent candidates for widespread application in next-generation lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) owing to their high theoretical specific capacity, low cost, sustainability, environmental friendliness, and structural diversity. However, organic carbonyl cathode materials face some key challenges, including high solubility in organic electrolytes and low discharge platform, which hinder their practical applications. Herein, a novel poly(4-aminotriphenylamine-3,3',4,4'-benzophenone tetramide) (PTNBI) electrode has been synthesized through the polymerization of 4-aminotriphenylamine with 3,3',4,4'-benzophenonetetracarboxylic dianhydride (BTDA), addressing the two crucial issues of solubility and low discharge platform.
View Article and Find Full Text PDFDrug Metab Dispos
February 2025
Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc, Groton, Connecticut.
Quantifying proteins involved in the absorption, distribution, metabolism, and excretion (ADME) of drugs is essential to improve understanding of their disposition and pharmacokinetics. Proteomics, because of its great versatility, is a widely used approach for protein analysis. However, existing protocols face challenges, such as poor peptide identification in liquid chromatography with tandem mass spectrometry under multiple reaction monitoring mode as well as the time- and labor-intensive nature of detergent-engaged workflows.
View Article and Find Full Text PDFJ Environ Manage
March 2025
School of Environmental Science & Engineering, Changzhou University, Changzhou, 213164, China. Electronic address:
Spent hydrodesulfurization (HDS) catalysts, produced in the petroleum refining process, are usually classified in hazardous solid waste. Recovery of valuable metals from spent HDS catalyst not only reduce substantially environmental risk but is an important way to alleviate global resource shortages for high-valuable metals. This study reviews numerous references regarding to recovery valuable metals from spent HDS catalyst in last decades, and divided current methods into three processes: pretreatment, oxidation-leaching, and separation-purification processes.
View Article and Find Full Text PDFWater Res
March 2025
State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, PR China; School of Materials Science and Engineering, Tiangong University, Tianjin 300387, PR China; Institute for Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa Science Campus, Florida, Johannesburg 1710, South Africa. Electronic address:
High-efficiency lithium (Li) extraction from a salt-lake brine with a low Li concentration and a high Mg/Li mass ratio poses a great challenge owing to the great physical and chemical similarities between Mg and Li. In this study, a hollow fiber (HF) membrane with an inside diameter of 0.872 mm and an outside diameter of 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!