Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A pulsed power facility has been designed for studying the warm dense matter regime. It is based on the pulsed Joule heating technique, originally proposed by Korobenko and Rakhel [Int. J. Thermophy. 20, 1257 (1999)], where a 3.96 µF capacitor bench is used for inducing a solid to plasma phase transition to metallic foils confined into a sapphire cell. The first experiments have been conducted on pure aluminum. Experimental data have been collected using electrical and optical diagnostics. Direct measurements of tension, current, pressure, and particle velocity allow us to evaluate the equation of state (EOS) and the DC conductivity of expanded aluminum. The results are compared to hydrodynamic simulations performed with various EOS models. As a result, collected data on aluminum highlight the relevance of our experimental procedure for improving EOS modeling in the warm dense matter regime.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0220607 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!