Background: As individuals age, the incidence and mortality rates of cerebrovascular accidents significantly rise, leading to fine motor impairments and cognitive deficits that impact daily life. In modern occupational therapy, assessing manual dexterity and cognitive functions typically involves observation of patients interacting with physical objects. However, this pen-and-paper method is not only time-consuming, relying heavily on therapist involvement, but also often inaccurate. Digital assessment methods, therefore, have the potential to increase the accuracy of diagnosis, as well as decrease the workload of health care professionals.

Objective: This study examined the feasibility of an interactive electronic pegboard for the assessment and rehabilitation of patients with stroke.

Methods: We explored the pegboard's clinical applicability by examining the relationship among stages, timing, and difficulty settings, as well as their alignment with patient capabilities. In total, 10 participants used a prototype of the pegboard for functional and task assessments; questionnaire interviews were conducted simultaneously to collect user feedback.

Results: Patients with stroke consistently required more time to complete tasks than expected, significantly deviating from the initial time frames. Additionally, the participants exhibited a slight reduction in performance levels in both manual dexterity and cognitive abilities. Insights from questionnaire responses revealed that the majority of participants found the prototype interface easy and enjoyable to use, with good functionality.

Conclusions: This preliminary investigation supports the efficacy of interactive electronic pegboards for the rehabilitation of the hand functions of patients with stroke, as well as training their attentional and cognitive abilities. This digital technology could potentially alleviate the burden of health care workers, positioning it as a valuable and intelligent precision health care tool.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11544338PMC
http://dx.doi.org/10.2196/55481DOI Listing

Publication Analysis

Top Keywords

interactive electronic
12
manual dexterity
12
dexterity cognitive
12
patients stroke
12
health care
12
electronic pegboard
8
participants prototype
8
cognitive abilities
8
cognitive
5
patients
5

Similar Publications

Accounting for learning environments in academic screening.

J Sch Psychol

February 2025

Department of Education and Human Services, Lehigh University, United States.

Within multi-tiered systems of support (MTSS) practice and research, students' need for academic intervention is often determined by comparison of students' screening scores to cut scores. We examined the degree to which the relationship between students' fall screening data (i.e.

View Article and Find Full Text PDF

Clinical diagnostics and biological research are advanced by magnetic theranostic, which uses macromolecule-based magnetic theranostic agents for targeted therapy and diagnostic imaging. Within this review, the interaction of magnetic nanoparticles (MNPs) with biological macromolecules will be covered. The exciting potential of macromolecule-based magnetic theranostic agents to be used as a tool in drug delivery, photothermally therapy (PTT), gene therapy, hyperthermia therapy and photodynamic therapy (PDT) will be discussed.

View Article and Find Full Text PDF

The holobiont concept has emerged as an attempt to recognize and describe the myriad interactions and physiological signatures inherent to a host organism, as impacted by the microbial communities that colonize and/or co-inhabit the environment within which the host resides. The field acknowledges and draws upon principles from evolution, ecology, genetics, and biology, and in many respects has been "pushed" by the advent of high throughput DNA sequencing and, to a lesser extent, other "omics"-based technologies. Despite the explosion in data generation and analyses, much of our current understanding of the human and ruminant "holobiont" is based on compositional forms of data and thereby, restricted to describing host phenotypes via associative or correlative studies.

View Article and Find Full Text PDF

Introduction: Throughout the perinatal period children are exposed to complex mixtures, including indoor chemicals such as phthalates, and biological agents. However, few studies focus on interactions between early-life co-exposures to shed light on how co-exposures modify their individual effects. Therefore, our study aims to assess whether early-life exposure to pets and related biological agents, namely pet allergens and endotoxin, modifies the association between di-(2-ethylhexyl) phthalate (DEHP) and asthma and wheeze in preschoolers to gain insight into interactions.

View Article and Find Full Text PDF

Multiphysics modelling of the impact of skin deformation and strain on microneedle-based transdermal therapeutic delivery.

Acta Biomater

December 2024

UCD Centre for Biomedical Engineering, University College Dublin, Belfield, Dublin 4, Ireland; School of Mechanical & Materials Engineering, University College Dublin, Belfield, Dublin 4, Ireland; UCD Charles Institute of Dermatology, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; The Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland. Electronic address:

Microneedle patches (MNs) hold enormous potential to facilitate the minimally-invasive delivery of drugs and vaccines transdermally. However, the micro-mechanics of skin deformation significantly influence the permeation of therapeutics through the skin. Previous studies often fail to appreciate the complexities in microneedle-skin mechanical interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!