AI Article Synopsis

  • Argonaute proteins are versatile nucleases present in all life forms, with eukaryotic versions involved in gene regulation and defense against viruses, while their prokaryotic counterparts help bacteria fend off invading genetic material.
  • Recent research indicates that prokaryotic argonautes (pAgos) may protect bacteria from the antibiotic ciprofloxacin, suggesting a potential role in DNA replication and repair.
  • The authors propose models for how pAgos could contribute to ciprofloxacin resistance, including assisting with DNA decatenation, processing DNA repair intermediates, or triggering the SOS response that enhances overall DNA repair and antibiotic resistance.

Article Abstract

Argonaute proteins are programmable nucleases found in all domains of life. Eukaryotic argonautes (eAgos) participate in genetic regulation, antiviral response, and transposon silencing during RNA interference. Prokaryotic argonautes (pAgos) are much more diverse than eAgos and have been implicated in defense against invading genetic elements. Recently, it was shown that pAgos protect bacterial cells from a topoisomerase poison ciprofloxacin, raising a possibility that they may play a role in DNA replication and/or repair. Here, we discuss possible models of pAgo-mediated ciprofloxacin resistance. We propose that pAgos could (i) participate in chromosome decatenation as a backup to topoisomerases; (ii) participate in the processing of DNA repair intermediates formed after topoisomerase poisoning, or (iii) induce SOS response that generally affects DNA repair and antibiotic resistance. These hypotheses should guide future investigations of the involvement of pAgos in the emergence of resistance to ciprofloxacin and, possibly, other antibiotics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555693PMC
http://dx.doi.org/10.1042/BST20240094DOI Listing

Publication Analysis

Top Keywords

prokaryotic argonautes
8
poison ciprofloxacin
8
dna repair
8
role prokaryotic
4
resistance
4
argonautes resistance
4
resistance type
4
type topoisomerases
4
topoisomerases poison
4
ciprofloxacin
4

Similar Publications

A mobile genetic element-derived primase-polymerase harbors multiple activities implicated in DNA replication and repair.

Nucleic Acids Res

January 2025

State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Shizishan Road No.1, Hongshan District, 430070 Wuhan, China.

Primase-polymerases (PrimPols) play divergent functions from DNA replication to DNA repair in all three life domains. In archaea and bacteria, numerous and diverse PPs are encoded by mobile genetic elements (MGEs) and act as the replicases for their MGEs. However, their varying activities and functions are not fully understood.

View Article and Find Full Text PDF
Article Synopsis
  • Bacteria have various DNA repair mechanisms to keep their genomes intact, but identifying these proteins is tricky due to their similarities.
  • A new search strategy helps identify and analyze DNA repair proteins, particularly those involved in RecA-dependent homologous recombination, revealing common proteins like RecA and SSB across many species.
  • The study finds that some DNA repair proteins are often found alongside immune system components, suggesting a potential link, but no immune system is entirely dependent on a single DNA repair protein, indicating a complex relationship between these systems in bacteria.
View Article and Find Full Text PDF
Article Synopsis
  • Argonaute proteins are versatile nucleases present in all life forms, with eukaryotic versions involved in gene regulation and defense against viruses, while their prokaryotic counterparts help bacteria fend off invading genetic material.
  • Recent research indicates that prokaryotic argonautes (pAgos) may protect bacteria from the antibiotic ciprofloxacin, suggesting a potential role in DNA replication and repair.
  • The authors propose models for how pAgos could contribute to ciprofloxacin resistance, including assisting with DNA decatenation, processing DNA repair intermediates, or triggering the SOS response that enhances overall DNA repair and antibiotic resistance.
View Article and Find Full Text PDF

Characterization of argonaute nucleases from mesophilic bacteria Pseudobutyrivibrio ruminis.

Bioresour Bioprocess

October 2024

State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.

Mesophilic Argonautes (Agos) from microbial resources have received significant attention due to their potential applications in genome editing and molecular diagnostics. This study characterizes a novel Ago from Pseudobutyrivibrio ruminis (PrAgo), which can cleave single-stranded DNA using guide DNA (gDNA). PrAgo, functioning as a multi-turnover enzyme, effectively cleaves DNA using 5'-phosphate gDNA, 14-30 nucleotides in length, in the presence of both Mn and Mg ions.

View Article and Find Full Text PDF

Eukaryotic Argonaute proteins (eAgos) utilize short nucleic acid guides to target complementary sequences for RNA silencing, while prokaryotic Agos (pAgos) provide immunity against invading plasmids or bacteriophages. The Sir2-domain associated short pAgo (SPARSA) immune system defends against invaders by depleting NAD and triggering cell death. However, the molecular mechanism underlying SPARSA activation remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!