Argonaute proteins are programmable nucleases found in all domains of life. Eukaryotic argonautes (eAgos) participate in genetic regulation, antiviral response, and transposon silencing during RNA interference. Prokaryotic argonautes (pAgos) are much more diverse than eAgos and have been implicated in defense against invading genetic elements. Recently, it was shown that pAgos protect bacterial cells from a topoisomerase poison ciprofloxacin, raising a possibility that they may play a role in DNA replication and/or repair. Here, we discuss possible models of pAgo-mediated ciprofloxacin resistance. We propose that pAgos could (i) participate in chromosome decatenation as a backup to topoisomerases; (ii) participate in the processing of DNA repair intermediates formed after topoisomerase poisoning, or (iii) induce SOS response that generally affects DNA repair and antibiotic resistance. These hypotheses should guide future investigations of the involvement of pAgos in the emergence of resistance to ciprofloxacin and, possibly, other antibiotics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555693 | PMC |
http://dx.doi.org/10.1042/BST20240094 | DOI Listing |
Nucleic Acids Res
January 2025
State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Shizishan Road No.1, Hongshan District, 430070 Wuhan, China.
Primase-polymerases (PrimPols) play divergent functions from DNA replication to DNA repair in all three life domains. In archaea and bacteria, numerous and diverse PPs are encoded by mobile genetic elements (MGEs) and act as the replicases for their MGEs. However, their varying activities and functions are not fully understood.
View Article and Find Full Text PDFCell Rep
January 2025
Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands. Electronic address:
Biochem Soc Trans
October 2024
Institute of Gene Biology, Russian Academy of Sciences, Moscow 119334, Russia.
Bioresour Bioprocess
October 2024
State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
Mesophilic Argonautes (Agos) from microbial resources have received significant attention due to their potential applications in genome editing and molecular diagnostics. This study characterizes a novel Ago from Pseudobutyrivibrio ruminis (PrAgo), which can cleave single-stranded DNA using guide DNA (gDNA). PrAgo, functioning as a multi-turnover enzyme, effectively cleaves DNA using 5'-phosphate gDNA, 14-30 nucleotides in length, in the presence of both Mn and Mg ions.
View Article and Find Full Text PDFNat Commun
October 2024
Department of Biochemistry, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
Eukaryotic Argonaute proteins (eAgos) utilize short nucleic acid guides to target complementary sequences for RNA silencing, while prokaryotic Agos (pAgos) provide immunity against invading plasmids or bacteriophages. The Sir2-domain associated short pAgo (SPARSA) immune system defends against invaders by depleting NAD and triggering cell death. However, the molecular mechanism underlying SPARSA activation remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!