The fast industrialization and mounting pollution have necessitated the need for advanced materials in order to degrade pollutants efficiently. Metal oxide-based and graphene-derivative photocatalytic nanocomposites are excellent for harnessing light energy in environmental remediation. Among them, ZnO-based nanocomposites have drawn considerable attention because of their high photocatalytic activity and stability. However, improving the performance of these nanocomposites is still necessary for their wide applications. This study explores the green synthesis, detailed characterization, and enhanced photocatalytic efficiency of reduced graphene oxide rGO/ZnO/FeO nanocomposites. The nanocomposites were synthesized via a hydrothermal method, utilizing milk thistle extract as a natural reducing agent, representing a novel and sustainable approach to fabricating magnetic rGO/FeO nanocomposites. These composites were further integrated with zinc oxide to produce a multifunctional material, exhibiting high surface area, superior electrical and thermal conductivity, and robust mechanical strength. The photocatalytic performance was significantly enhanced due to the synergistic interaction between graphene and metal oxide nanoparticles, leading to efficient degradation of environmental pollutants. Electrochemical analysis via cyclic voltammetry revealed distinctive redox peaks, demonstrating efficient electron transfer processes essential for applications in energy conversion and storage. This green synthesis not only provides a sustainable pathway for the development of advanced nanocomposites but also underscores their potential in a wide range of applications, including environmental remediation, sensing, energy storage, and optoelectronics.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10895-024-04014-yDOI Listing

Publication Analysis

Top Keywords

green synthesis
12
environmental remediation
12
enhanced photocatalytic
8
photocatalytic performance
8
nanocomposites
8
rgo/zno/feo nanocomposites
8
sustainable approach
8
photocatalytic
5
synthesis enhanced
4
performance rgo/zno/feo
4

Similar Publications

In this present investigation, plant-mediated synthesis of titanium oxide (TiO) nanoparticles was synthesized from seagrass (Thalassia hemprichi) using the hot plate combustion method (HPCM). Synthesized TiO nanoparticles optical, functional, structural, and morphology properties were analyzed by UV-visible spectroscopy, Fourier transform infrared spectroscopy (FT-IR), powder X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive X-ray spectroscopy (EDX). SEM analysis confirmed the spherical shape of the TiO nanoparticles were observed in various sizes, viz.

View Article and Find Full Text PDF

Misfolding and accumulation of amyloid-β (Aβ) in the brains of patients with Alzheimer's disease (AD) lead to neuronal loss through various mechanisms, including the downregulation of eukaryotic elongation factor 2 (EEF2) protein synthesis signaling. This study investigated the neuroprotective effects of indole and coumarin derivatives on Aβ folding and EEF2 signaling using SH-SY5Y cells expressing Aβ-green fluorescent protein (GFP) folding reporter. Among the tested compounds, two indole (NC009-1, -6) and two coumarin (LM-021, -036) derivatives effectively reduced Aβ misfolding and associated reactive oxygen species (ROS) production.

View Article and Find Full Text PDF

Background: Chronic kidney disease (CKD) is prevalent among elderly patients with type 2 diabetes mellitus (T2DM). The association between dietary patterns and CKD in elderly T2DM patients remains understudied. This study aimed to investigate the relationship between dietary patterns and CKD in elderly Chinese patients with T2DM.

View Article and Find Full Text PDF

Nanomedical applications have increased significantly. This work aimed to fabricate and characterize cobalt oxide nanoparticles (CoOnps) synthesized biologically via aqueous Alhagi maurorum extract and evaluate their cytotoxic and antimicrobial impacts. Green-synthesized CoOnps were prepared and analyzed using UV-Vis spectrophotometer UV-vis, Scanning electron microscopy (SEM), Transmission electron microscopy TEM, Energy dispersive X-ray analysis EDAX, Fourier transform infrared, FTIR, and X-ray diffraction (XRD).

View Article and Find Full Text PDF

Collagen nanoparticles (collagen-NPs) possess numerous applications owing to their minimal immunogenicity, non-toxic nature, excellent biodegradability and biocompatibility. This study presents a novel sustainable technique for one-step green synthesis of hydrolyzed fish collagen-NPs (HFC-NPs) using a hot-water extract of Ulva fasciata biomass. HFC-NPs were characterized using TEM, FTIR, XRD, ζ-potential analyses, etc.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!