Multilevel coupled cluster theory offers reduced scaling computation of intensive properties in systems that are too large for standard coupled cluster calculations. A significant benefit of the multilevel coupled cluster framework is the possibility of calculating intensive properties that are not tightly localized if an appropriate set of active orbitals is used. Correlated natural transition orbitals (CNTOs) are tailored to describe excitation processes. For multilevel coupled cluster singles and doubles (MLCCSD) and singles and perturbative doubles (MLCC2) calculations, the construction of CNTOs generally becomes the computational bottleneck. Here, we demonstrate how CNTOs can be obtained with operations, eliminating the -scaling steps involved in the original approach. This reduction in scaling moves the bottleneck of MLCC2 and MLCCSD calculations from the active orbital space preparation to the MLCC2 and MLCCSD equations with -scaling.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11551955 | PMC |
http://dx.doi.org/10.1021/acs.jpca.4c06271 | DOI Listing |
J Chem Theory Comput
January 2025
Research Unit of Structural Chemistry & Computational Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Berlin 13125, Germany.
Density functional theory (DFT) calculations have emerged as a powerful theoretical toolbox for interpreting and analyzing the experimental nuclear magnetic resonance (NMR) spectra of chemical compounds. While DFT has been extensively used and benchmarked for isotropic NMR observables, the evaluation of the full chemical shielding tensor, which is necessary for interpreting residual chemical shift anisotropy (RCSA), has received much less attention, despite its recent applications in the structural elucidation of organic molecules. In this study, we present a comprehensive benchmark of carbon shielding anisotropies based on coupled cluster reference tensors taken from the NS372 benchmark data set.
View Article and Find Full Text PDFEnviron Geochem Health
January 2025
Department of Biochemistry, College of Sciences, King Saud University, 11451, Riyadh, Saudi Arabia.
The effect of open-pit bauxite mining on beach sediment contamination in the urban coastal environment of Kuantan City, Malaysia, was investigated. The contents of 11 heavy metals (Pb, Cd, Al, Mn, Cu, Zn, Fe, As, Ni, Cr, and Ag) in 30 samples from Kuantan beach sediment zones (supratidal, intertidal, and subtidal) were determined using inductively coupled plasma optical emission spectrometry followed by contamination indexes, Pearson's correlation analysis, and principal component analysis (PCA). The results indicated that Cd, As, Ni, and Ag values in beach sediment zones were significantly higher compared to background values.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2024
State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China.
() is one of the primary agents involved in porcine respiratory disease complex, and circulates in the swine industry worldwide. The prevention and control of is complicated. Thus, a recombinase-aided amplification (RAA) assay coupled with the clustered regularly-interspaced short palindromic repeats (CRISPR)/Cas12a system was established for the detection of .
View Article and Find Full Text PDFFood Sci Biotechnol
January 2025
QU Health, College of Health Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
In recent years, there has been a growing interest in developing a distinguished alternative to human consumption of animal-based proteins. The application of lentil proteins in the food industry is typically limited due to their poor solubility and digestibility. An innovative method of balancing lentil-whey protein (LP-WP) complexes with higher-quality protein properties was established to address this issue, which coupled a pH-shifting approach with fermentation treatment.
View Article and Find Full Text PDFACS Omega
December 2024
Faculty of Health Science, University of Ss. Cyril and Methodius, 91701 Trnava, Slovakia.
A hybrid B3LYP version of the Density Functional Theory was applied in full geometry optimization followed by vibrational analysis of mustard-type molecules acting as antiblood cancer agents: melphalan and bendamustine. All calculations were performed with water as a solvent. In addition to the ground-state properties (dipole moment, quadrupole moment, dipole polarizability, solvated surface and volume, zero-point vibration energy, total entropic term), properties that characterize adiabatic redox processes (ionization energy, electron affinity, molecular electronegativity, chemical hardness, electrophilicity index) together with the absolute oxidation and reduction potentials were evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!