A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hypoxia-Inducible Factor-1α Potentiates Multiterritory Perforator Flap Survival by Augmenting Vascular Endothelial Growth Factor Expression in the Choke II Zone. | LitMetric

AI Article Synopsis

  • HIF-1α plays a crucial role in helping tissues adapt to low oxygen conditions and this study looks at its effects on blood vessel formation in specific surgical flaps used in rats.
  • The research involved 90 male Wistar rats divided into three groups, receiving different treatments after flap surgery to measure angiogenesis, using various testing methods including x-ray angiography and histological analysis.
  • Results indicated that the group treated with DMOG showed significantly increased blood vessel density and higher levels of HIF-1α and VEGF compared to the other groups, suggesting that HIF-1α enhances blood vessel growth and may improve tissue survival in these surgical procedures.

Article Abstract

Background: Hypoxia-inducible factor-1α (HIF-1α), regulated by prolyl hydroxylase, plays a central role in tissue adaptation to ischemia. This study investigates the impact of HIF-1α on angiogenesis in the Choke II zone of multiterritory perforator flaps.

Methods: Ninety male Wistar rats were allocated into 3 groups, with 30 rats in each group: the dimethyloxalylglycine (DMOG) group, the 3-(5-hydroxymethyl-2-furyl)-1-benzylindazole (YC-1) group, and the normal saline (NS) group. All rats underwent multiterritory perforator flap surgeries on their dorsal side. Subsequently, they received intraperitoneal injections of DMOG (40 mg/kg), YC-1 (10 mg/kg), and normal saline on postoperative days 1, 2, and 3, respectively. After treatment, angiogenesis in the Choke II zone of the flap on day 7 was observed through transillumination tests and lead oxide/gelatin x-ray angiography. Histological features were determined using hematoxylin and eosin staining, and the expression of HIF-1α and vascular endothelial growth factor (VEGF) in the Choke II region of the flap was assessed via immunohistochemistry and western blotting.

Results: Compared to the YC-1 and NS groups, the DMOG group exhibited significant angiogenesis, resulting in a denser vascular network in the Choke II zone of the flap. The DMOG group showed significantly higher microvessel density in the Choke II zone than the YC-1 and NS groups (7.10 ± 0.99 vs 24.30 ± 3.65; 14.30 ± 2.40 vs 24.30 ± 3.65, both P<0.05). Additionally, the DMOG group demonstrated higher expression of VEGF and HIF-1α in the flaps than the other groups (P < 0.05).

Conclusions: In summary, HIF-1α enhances the expression of VEGF, promoting angiogenesis in the Choke II zone of the multiterritory perforator flap, thus increasing the survival area.

Download full-text PDF

Source
http://dx.doi.org/10.1097/SAP.0000000000004122DOI Listing

Publication Analysis

Top Keywords

choke zone
20
multiterritory perforator
12
dmog group
12
hypoxia-inducible factor-1α
8
perforator flap
8
vascular endothelial
8
endothelial growth
8
growth factor
8
angiogenesis choke
8
normal saline
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!