The malaria parasite employs antigenic variation of the virulence factor erythrocyte membrane protein 1 (PfEMP1) to escape adaptive immune responses during blood infection. Antigenic variation of PfEMP1 occurs through epigenetic switches in the mutually exclusive expression of individual members of the multi-copy gene family. genes are located in perinuclear clusters of transcriptionally inactive heterochromatin. Singular gene activation is linked to locus repositioning into a dedicated zone at the nuclear periphery and deposition of histone 3 lysine 4 di-/trimethylation (H3K4me2/3) and H3K9 acetylation marks in the promoter region. While previous work identified the putative H3K4-specific methyltransferase PfSET10 as an essential enzyme and positive regulator of gene expression, a recent study reported conflicting data. Here, we used iterative genome editing to engineer a conditional PfSET10 knockout line tailored to study the function of PfSET10 in gene regulation. We demonstrate that PfSET10 is not required for mutually exclusive gene expression and switching. We also show that PfSET10 is dispensable not only for asexual parasite proliferation but also for sexual conversion and gametocyte differentiation. Furthermore, comparative RNA-seq experiments revealed that PfSET10 plays no obvious role in regulating gene expression during asexual parasite development and gametocytogenesis. Interestingly, however, PfSET10 shows different subnuclear localization patterns in asexual and sexual stage parasites and female-specific expression in mature gametocytes. In summary, our work confirms in detail that PfSET10 is not involved in regulating gene expression and is not required for blood-stage parasite viability, indicating PfSET10 may be important for life cycle progression in the mosquito vector or during liver stage development.IMPORTANCEThe malaria parasite infects hundreds of millions of people every year. To survive and proliferate in the human bloodstream, the parasites need to escape recognition by the host's immune system. To achieve this, can change the expression of surface antigens a process called antigenic variation. This fascinating survival strategy is based on infrequent switches in the expression of single members of the multigene family. Previous research reported conflicting results on the role of the epigenetic regulator PfSET10 in controlling mutually exclusive gene expression and switching. Here, we unequivocally demonstrate that PfSET10 is neither required for antigenic variation nor the expression of any other proteins during blood-stage infection. This information is critical in directing our attention toward exploring alternative molecular mechanisms underlying the control of antigenic variation and investigating the function of PfSET10 in other life cycle stages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11580404 | PMC |
http://dx.doi.org/10.1128/msphere.00546-24 | DOI Listing |
Vet Sci
November 2024
Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China.
Pigeon Newcastle disease (ND) is the most common viral infectious disease in the pigeon industry, caused by pigeon paramyxovirus type 1 (PPMV-1), a variant of chicken-origin Newcastle disease virus (NDV). Previous studies have identified significant amino acid differences between PPMV-1 and chicken-origin NDV at positions 347 and 349 in the hemagglutinin-neuraminidase (HN) protein, with PPMV-1 predominantly exhibiting glycine (G) at position 347 and glutamic acid (E) at position 349, while most chicken-origin NDVs show E at position 347 and aspartic acid (D) at position 349. However, the impact of these amino acid substitutions remains unclear.
View Article and Find Full Text PDFbioRxiv
December 2024
Duke University, Duke Human Vaccine Institute, Durham NC 27710, USA.
(HNVs), a genus within the family, includes the highly virulent Nipah and Hendra viruses that cause yearly reoccurring outbreaks of deadly disease. Recent discoveries of several new species, including the zoonotic Langya virus, have revealed much higher antigenic diversity than currently characterized. Here, to explore the limits of structural and antigenic variation in HNVs, we construct an expanded, antigenically diverse panel of HNV fusion (F) and attachment (G) glycoproteins from 56 unique HNV strains that better reflects global HNV diversity.
View Article and Find Full Text PDFBMC Vet Res
December 2024
College of Veterinary Medicine, Southwest University, Rongchang, Chongqing, 402460, China.
Background: In recent years, the prevalence and incidence of porcine epidemic diarrhea virus (PEDV) infection have been on the rise. The occurrence of multiviral infections and recombination mutations has led to accelerated viral evolution and reduced vaccine efficacy. In the present study, a PEDV strain was isolated from a pig farm (Chongqing Province, China) with an outbreak of porcine diarrhea, and its S gene was found to be recombinant.
View Article and Find Full Text PDFTrends Parasitol
December 2024
University of Glasgow Centre for Parasitology, University of Glasgow, School of Infection and Immunity, Sir Graeme Davies Building, 120 University Place, Glasgow, G12 8TA, UK. Electronic address:
Trypanosoma brucei infectious populations are marked by considerable diversity in the parasite's major antigen, the variant surface glycoprotein (VSG). However, most parasites in the bloodstream are non-replicating, questioning how VSG diversity arises. Beaver et al.
View Article and Find Full Text PDFExpert Rev Anti Infect Ther
December 2024
Faculty of Health Sciences, Universidad Científica del Sur, Lima, Peru.
Introduction: The emergence of the H3N2 influenza virus in 1968 marked a significant event as it crossed the species barrier. This shift led to a pandemic, resulting in the deaths of one million people globally and highlighting the virus's severe impact on older individuals due to antigenic drift.
Area Covered: This review comprehensively examines the virological characteristics, evolutionary trends, and global epidemiology of the Influenza A (H3N2) virus.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!