AI Article Synopsis

  • Metal implants can create artifacts in CT images that complicate diagnosis, and while spectral CT shows promise for reducing these artifacts, it often requires multiple energy spectra, making it impractical for traditional CT systems.
  • The MARSS method proposed in this study introduces a novel approach to metal artifact reduction using single spectral CT, leveraging prior knowledge and a constrained reconstruction model to limit solution spaces and simplify the problem.
  • Results show that the MARSS method effectively reduces artifacts while preserving structural integrity and is superior to other methods by preventing new artifacts from forming during the imaging process.*

Article Abstract

Background: For patients with metal implants, computed tomography (CT) imaging results suffer from metal artifacts, which seriously affect image evaluation and even lead to misdiagnosis. Because spectral CT technology has the advantage of quantitative imaging, basis material decomposition, and so on, the current metal artifact reduction methods are utilizing spectral information to reduce metal artifacts with good results. However, they usually require projection data from multiple spectra or energy-windows, which is difficult to realize in conventional CT.

Purpose: To satisfy the status quo, the aim of this work is to propose a metal artifact reduction (MAR) method based on single spectral CT (MARSS). By incorporating prior information, the average density of some base materials, and a constrained image reconstruction model is established. It forces the solution spaces of the materials to be discrete and finite, making the model easier to solve.

Methods: The MARSS method uses the idea of discrete tomography to establish a constrained reconstruction model. By incorporating priori knowledge, the constraint forces the solution spaces of some materials to be discrete, which can effectively downsize the solution space and reduce the ill-posedness of this problem. Then, an iteration algorithm is developed to solve this model. This algorithm iterates alternately between reconstruction and discretization. It ensures that the solution spaces are discrete while the polychromatic projection of the reconstructed image converges to that of the scanned object.

Results: The MRASS method significantly reduces artifacts and restores structures near metal to a large extent. Unlike the comparison MAR methods, it effectively prevents the introduction of new artifacts and distortion of the structure.

Conclusions: The MARSS method can achieve MAR based on single spectral CT. Subjective and quantitative evaluation of the results show that the method significantly improves image quality compared to competing methods.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.17479DOI Listing

Publication Analysis

Top Keywords

metal artifact
12
artifact reduction
12
based single
12
single spectral
12
solution spaces
12
method based
8
spectral marss
8
metal artifacts
8
reconstruction model
8
forces solution
8

Similar Publications

This study aims to improve our understanding of acute ischemic stroke clot imaging by integrating CT attenuation information with MRI susceptibility signal of thrombi. For this proof-of-principle experimental study, fifty-seven clot analogs were produced using ovine venous blood with a broad histological spectrum. Each clot analog was analyzed to determine its RBC content and chemical composition, including water, Fe III, sodium, pH, and pO2.

View Article and Find Full Text PDF

Artifact Reduction in Interventional Devices Using Virtual Monoenergetic Images and Iterative Metal Artifact Reduction on Photon-Counting Detector CT.

Invest Radiol

January 2025

From the Department of Diagnostic and Interventional Radiology, University Hospital Bonn, Bonn, Germany (Y.C.L., N.M., P.A.K., A.I., T.D., J.A.L., D.K.); and Siemens Healthineers AG, Erlangen, Germany (S.F., V.H., B.S.).

Objectives: The aim of this study was to assess the impact of an iterative metal artifact reduction (iMAR) algorithm combined with virtual monoenergetic images (VMIs) for artifact reduction in photon-counting detector computed tomography (PCDCT) during interventions.

Materials And Methods: Using an abdominal phantom, we conducted evaluations on the efficacy of iMAR and VMIs for mitigating image artifacts during interventions on a PCDCT. Four different puncture devices were employed under 2 scan modes (QuantumSn at 100 kV, Quantumplus at 140 kV) to simulate various clinical scenarios.

View Article and Find Full Text PDF

Artifacts at Cardiac MRI: Imaging Appearances and Solutions.

Radiographics

January 2025

From the Department of Radiology, Cardiovascular Imaging, Mayo Clinic, 200 1st St SW, Rochester, MN 559905 (P.S.R., P.A.A.); Department of Radiology, Division of Cardiothoracic Imaging, Jefferson University Hospitals, Philadelphia, Pa (B.S.); Department of Radiology, Baylor Health System, Dallas, Tex (P.R.); Department of Diagnostic Radiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong SAR (M.Y.N.); and Department of Diagnostic Radiology, Cleveland Clinic, Cleveland, Ohio (M.A.B.).

Cardiac MRI (CMR) is an important imaging modality in the evaluation of cardiovascular diseases. CMR image acquisition is technically challenging, which in some circumstances is associated with artifacts, both general as well as sequence specific. Recognizing imaging artifacts, understanding their causes, and applying effective approaches for artifact mitigation are critical for successful CMR.

View Article and Find Full Text PDF

Purpose: This study aimed to evaluate the impact of a metal artifact reduction (MAR) algorithm on cone-beam computed tomography (CBCT) scans of titanium and zirconia implants, both within and outside the field of view (FOV).

Materials And Methods: In this study, a dry human mandible was positioned in a CBCT scanner with only its left quadrant included in the FOV. Each type of implant (titanium and zirconia) was placed once in the right second premolar extraction socket and once in the left second premolar extraction socket of the mandible.

View Article and Find Full Text PDF

We present the case of a patient who came to the emergency department with a significant decrease in vision and dilated pupil in the left eye. Since neurological pathologies were primarily considered, diffusion brain magnetic resonance imaging (MRI) and brain computed tomography (CT) were requested. After the results were reported as normal, we were consulted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!