AI Article Synopsis

  • Using mesenchymal stem cells for skin injury treatment faces challenges like ensuring these cells can effectively integrate and maintain their healing properties.
  • DNA self-assembly techniques can be leveraged to create multifunctional structures on cell surfaces, boosting their therapeutic potential.
  • Engineered stem cells with DNA nanofiber decoration showed improved abilities to scavenge harmful reactive oxygen species, attach to damaged blood vessel cells, and promote new blood vessel formation, making them a promising option for healing wounds in a mouse model.

Article Abstract

A major challenge for stem cell therapies, such as using mesenchymal stem cells to treat skin injuries, is the stable engraftment of exogenous cells and the maintenance of their regenerative capacities in the wound areas. DNA-based self-assembly strategies can be used for artificial and multifunctional cell surface engineering to stabilize and enhance their functions for therapeutic applications. Here, we developed DNA nanofiber-decorated stem cells, in which DNA-based, multivalent fiber-like structures were self-assembled in situ on the cell surfaces. These engineered stem cells have demonstrated robust reactive oxygen species (ROS) scavenging effects, specific adhesion to damaged vascular endothelial cells, and the ability to enhance angiogenesis, which were effective and safe for acute or chronic wound healing in a mouse model with excisional skin injury. This DNA nanostructure-engineered stem cell provides a novel therapeutic platform for the treatment of tissue damage.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.nanolett.4c03144DOI Listing

Publication Analysis

Top Keywords

stem cells
16
mesenchymal stem
8
wound healing
8
stem cell
8
cells
6
stem
5
cells engineered
4
engineered multicomponent
4
multicomponent coassembled
4
coassembled dna
4

Similar Publications

Alterations in Ileal Secretory Cells of The DSS-Induced Colitis Model Mice.

Acta Histochem Cytochem

December 2024

Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi, Kitakyushu, Fukuoka 807-8555, Japan.

Inflammatory bowel disease is triggered by abnormalities in epithelial barrier function and immunological responses, although its pathogenesis is poorly understood. The dextran sodium sulphate (DSS)-induced colitis model has been used to examine inflammation in the colon. Damage to mucosa primality occurs in the large intestine and scarcely in the small intestine.

View Article and Find Full Text PDF

Crosstalk between thyroid CSCs and immune cells: basic principles and clinical implications.

Front Immunol

December 2024

The Seventh Department of General Surgery, Department of Thyroid Surgery, The First Hospital of Lanzhou University, Lanzhou, China.

Thyroid cancer has become the most common endocrine malignancy. Although the majority of differentiated thyroid cancers have a favorable prognosis, advanced thyroid cancers, iodine-refractory thyroid cancers, and highly malignant undifferentiated carcinomas still face a serious challenge of poor prognosis and even death. Cancer stem cells are recognized as one of the central drivers of tumor evolution, recurrence and treatment resistance.

View Article and Find Full Text PDF

Disrupted hippocampal functions and progressive neuronal loss represent significant challenges in the treatment of Alzheimer's disease (AD). How to achieve the improvement of pathological progression and effective neural regeneration to ameliorate the intracerebral dysfunctional environment and cognitive impairment is the goal of the current AD therapy. We examined the therapeutic potential of clinical-grade human derived dental pulp stem cells (hDPSCs) in cognitive function and neuropathology in AD.

View Article and Find Full Text PDF

This study investigates a method for programming immune cells using a biomaterial-based system, providing an alternative to traditional cell manipulation techniques. It addresses the limitations of engineered adoptive T cell therapies, such as T cell exhaustion, by introducing a gelatin-hyaluronic acid (GH-GMA) hydrogel system. We characterized tonsil mesenchymal stem cells (TMSCs), lymphatic endothelial cells (T-LECs), stimulated T-CD8 T cells (STCs), and GH-GMA biomaterials.

View Article and Find Full Text PDF

We develop a novel method for image segmentation of 3D confocal microscopy images of emerging hematopoietic stem cells. The method is based on the theory of persistent homology and uses an optimal threshold to select the most persistent cycles in the persistence diagram. This enables the segmentation of the image's most contrasted and representative shapes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!